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Continuous-time Markov Chain

CTMC and its Generator Matrix T

@ Let {¢(t),t > 0} be an irreducible CTMC with a (finite) set
S of all possible phases ¢(t)

® Let P(t); = P(¢(t) = jlp(0) = i) and P(t) = [P(t);]

@ Note that P(t + s) = P(t)P(s) and limy,_o+ P(h) =1

with generator




Continuous-time Markov Chain

Example - Hydro-Power Generator

g

1 on-design, 2 off-design, 3 start, 4 stop, 5 idle, 6 maintenance



Continuous-time Markov Chain

Stationary Distribution Vector 7

@ Assume that the CTMC is positive-recurrent

o Let T = IimHoo P(t),'j

7 = [mj]ies is the solution of

T = 0
™1 = 1

where 0 is a row vector of zeros, 1 is a column vector of ones

<
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Continuous-time Markov Chain

Example - Hydro-Power Generator

Given
@ CTMC with § ={1,2,3,4,5,6} and generator T
@ Revenuerate c;forallie S

we can derive

long-run mean revenue = » " mc;

I

But we would like to do better than this!



1-D Stochastic Fluid Model

Definition of a 1-D FM

Let {((1), Y(t)),t > 0} be a process such that:

@ {,(t),t> 0} is an irreducible CTMC with a (finite) set of
phases S and generator T

@ {o(t),t > 0} is the driving process
@ Level Y(t) records some performance measure

@ When ¢(t) = i, the rate at which Y(t) is changing is r;



1-D Stochastic Fluid Model

Buffer Y

dzgt) =1 when ¢(t)=1i and Y(t)>0



1-D Stochastic Fluid Model

Example - Hydro-Power Generator

To model the deterioration process, let

@ Y(t) € [0, 1] be the deterioration level
@ 0 - brand new, 1 - needs replacement

@ r; be deterioration rates, i € {1,2,3,4,5,6}



1-D Stochastic Fluid Model

In-Out Fluid Idea

level
LY
LY

,,,,,
o
-
_______

time

Figure: Startin (i,0), end in (j, y) at time A(y)
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1-D Stochastic Fluid Model

Corresponding Laplace-Stieltjes Transform (LST)

Definition
Let AY(s) = [AY(s);] be such that for all i, j € Sy U Sz

AV (s)j = E(e79D) : o(8(y)) = jl(0) = i, Y(t) = 0)
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1-D Stochastic Fluid Model

Some Notation

@ S1={ieS:r>0}

0 S ={ieS: <0}

0 So={ieS:r=0}

@ Ry = diag(r;) for all i € S;
@ R, =diag(|r|) forallie S

@ Tyy =[Tj]forallic Sy,j €Sy
@ Tip=[Tj]forallic Sy,jesSe
@ Tyo=[T;]forallic Sy,jeSy
@ etc
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1-D Stochastic Fluid Model

Matrix Q(s): assume Re(s) >0

Qi1(s) = Ry'[(Ty1 —sl) — Tyo(Too — sI) ™' Toq]
Qx(s) = Ry '[(Taz — sl) — Tao(Too — sl) " Toz]
Qi2(s) = Ry'[Tiz— Tio(Too — s1) ' Tog]
Q21(s) = Ry '[Ta1 — Tao(Too — s1) ' Tos]
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1-D Stochastic Fluid Model

Q(s) as the Generator of the 1-D FM

Ay(s) — eQ(s)y

@ Note that A¥*4(s) = AY(s)AY(s) and lim,_,o+ AY(s) =1

@ Evaluate A"(s) for small h

. Ah(s)—
@ Show that limj,_,+ 2 (h) I = Q(s)
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1-D Stochastic Fluid Model

Q11(8), Q22(s) as Generators

Note the meaning of

o eQ(s)y

o eQz2(s)y

as LSTs
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1-D Stochastic Fluid Model

Return to Level Zero in Y(.)

fluid level

time |

Figure: Start in (i,0), end in (j,0) at time 6(0)
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1-D Stochastic Fluid Model

Matrix W(s)

Let 6(0) = inf{t > 0: Y(t) = 0}

For s with Re(s) > 0, i withr; > 0, j with r; < 0, let

V(s)j = E(6(0) < 0,6(0) = i[(0) = i, Y(0) = 0)

Let
W(s) = [V(s)j]

W = w(0) = [v]
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1-D Stochastic Fluid Model

Two types of returns: 1) No down-up periods

fluid level

time
¢ T
18/59



1-D Stochastic Fluid Model

Two types of returns: 2) With down-up periods

fluid level

time

i
[
>

al-==
N
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1-D Stochastic Fluid Model

Integral Equation for W

W(s) = /yoo eQ11(S)y<Q12(S)+w(S)Qm(S)‘U(S))esz(s)ydy
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1-D Stochastic Fluid Model

Riccati Equation for w

For s > 0, W(s) is the minimum nonnegative solution of

Qi2(S) + Qy1(S)W(S) + W(S)Q2a(S) + W(S)Qz(S)W(s) =0

21/59



1-D Stochastic Fluid Model

Efficient Algorithm for W(s)

@ LetWw(s,0)=0
@ For n> 1, evaluate W(s,n+ 1), by solving

AV(s,n+1)+W¥(s,n+1)B = C
where

A = Qq(s)+W(s,NMQ2(s)
B Qzz(s) + Qa1 (s)W(s,n)
C = —Qx(8) +W¥(s,n)Qy(s)¥(s,n)

until a stopping criterion is met
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1-D Stochastic Fluid Model

(Transient) Results Derived Using Q(s) and W(s)

@ Return to the original level
@ Draining/Filling to some level
@ Return to the original level while avoiding some taboo level

@ Draining/Filling to some level while avoiding some taboo
level

@ Treatment of models with unbounded, bounded and
multi-layer buffers
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2-D Stochastic Fluid Model

Definition of a 2-D FM

Let {((t), X(t), Y(t)),t > 0} be a process such that

@ {(¢(t),X(t)),t >0} isa1-D FM with the set of phases S,
generator T and rates ¢;

@ {(p(t),Y(t),t>0}isa1-D FM with the set of phases S,
generator T and rates r;

We study the case
@ X(t) € (—o0, +00)
e Y(t)>0
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2-D Stochastic Fluid Model

Buffer X Buffer Y
ax(t) - .
7 = CI When (p(t) =1
d\;gt) =r, when o(t)=1i and Y(t)>0
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2-D Stochastic Fluid Model

Example - Hydro-Power Generator

To model the deterioration and revenue processes, let

@ o(t) € {1,2,3,4,5,6} be the phase at time ¢
@ X(t) € (—o0, +00) be the total revenue level, with rates c;

@ Y(t) € [0, 1] be the deterioration level, with rates r;
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2-D Stochastic Fluid Model

Sample Path Example - X(t) € (—o0, +o0), Y(f) >0

Evolution of (i(t), X(t), Y(t)) in time

level Y(t)

“ | L L L L L L L '
-1600 -140 1200 100 -HO -0 -40 -20 i} 20

level X(t)
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2-D Stochastic Fluid Model

Shift Idea

@ Let Z(t) = X(t) — X(0) be the total shift in X(.) at time ¢
@ Evaluate the LST of shift Z(.) for a path of interest in Y(.)

@ Then, given initial state (¢(0), X(0), Y(0)), the distribution
of X(.) can the be evaluated
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2-D Stochastic Fluid Model

Shift Idea - Observe a Path in Y(.)

level
LY

,,,,,
o
-
_______

'a‘nl1e
Figure: Startin (i,0), end in (j, y). Consider Z(4(y)).
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2-D Stochastic Fluid Model

Corresponding Laplace-Stieltjes Transform

Let A (s) = [A%(s);] be such that for all i, j € Sy U S,

A% (9);

is given by

E(e* : p(8(y)) = j, Z(t) = x|(0) = i, Y(t) = 0, X(t) = 0)
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2-D Stochastic Fluid Model

Matrix W(s)
T T
Assume s such that max - < Re(s) < min -~ (1)
i:ci>0 Cj i:ci<0 Cj
Wii(s) = Ry'[(T11 —sD1) —Tio(Too — sDo) ' Toi]
Was(s) = R;'[(T2e — sD2) — Tao(Too — SDo) ' Toz]
Wiz(s) = R;'[Ty2 — Ti0(Too — Do) 'To2]
(s)

= R, '[T2r — Tao(Too — SDo) ' Tor]
where Dy = diag(¢;)jes, for k =0,1,2
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2-D Stochastic Fluid Model

W(s) as the Generator of the 2-D FM

A (s) = eV

@ Note that AL(s) = A% (s)AY(s) and lim, o+ Ak (s) =1

@ Evaluate Af(s) for small h

o Show that limy, ,or 2X=! — w(s)
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2-D Stochastic Fluid Model

Shift Idea - Return to Level Zero in Y(.)

fluid level

time |

Figure: Startin (/,0), end in (j,0). Consider Z(6(0)).
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2-D Stochastic Fluid Model

Matrix Wx(s)

For s with Re(s) > 0, i € Sy, j € Sz, let Vx(s); be given by

E[e>?C0) 1 6(y) < 00, 0(6(y)) = j1Y(0) = y,¢(0) = i]

Let

Wx(s) = [Wx(s)j]
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2-D Stochastic Fluid Model

Riccati Equation for Wx(s)

If s is real, then W x(s) is the minimal nonnegative solution of

W12(S)+\UX(S)W21 (S)WX(S)+W1 1 (S)WX(S)+WX(S)W22(S) =0
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2-D Stochastic Fluid Model

Efficient Algorithm for W x(s)

@ LetWy(s,0)=0
@ Forn> 1, evaluate Wx(s,n+ 1), by solving

AVy(s,n+1)+Wx(s,n+1)B = C
where

A = Wyi(s) + Wx(s,MW2i(s)
B = Wx(s)+Wa(s)Wx(s,n)
C = —Wix(s)+ Wx(s,nWz(s)Wx(s,n)

until a stopping criterion is met
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2-D Stochastic Fluid Model

(Transient) Results Derived Using W(s) and W x(s)

@ LST of the shift in X(.) for the following paths in Y(.)

e Return to the original level

e Draining/Filling to some level

e Return to the original level while avoiding some taboo level

e Draining/Filling to some level while avoiding some taboo
level

@ Treatment of models with unbounded/bounded buffer Y

@ Treatment of models with multi-layers in buffer Y, and with
boundaries at which the behaviour changes
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2-D Stochastic Fluid Model

Visual explorations of 2-D FMs

@ Bounded with X(t) >0, Y(t)>0 *
@ Unbounded *

@ Unbounded with no drift *

For more, check out drMalgorzata on youtube!
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1-D Stochastic Fluid Model Revisited

Upward Shift Idea: W(s) Revisited

Total Upward = Total Downward

] =X

Figure: Upward shift Z+(0(0)) = Downward shift Z—(6(0))
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1-D Stochastic Fluid Model Revisited

Upward Shift Idea - Observe a Path in Y/(.)

level
L)

,,,,,
o
-
_______

time

Figure: Start in (i,0), end in (j, y). Consider Z*(4(y)).
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1-D Stochastic Fluid Model Revisited

Matrix Q*(s)

Definition
For s with Re(s) > 0

at(s)- |

Qi1 —sl Qy2 ]
Qa1 Q2
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1-D Stochastic Fluid Model Revisited

Q" (s) as a Generator

Let Z*(t) be the total upward shiftin Y(.) at time t, given by

t
250 = [ 1w %l > O)al
u

The LST of Z*(.) at time d(y),
E(e™: (0(y)) = J, Z*(t) = x|(0) = i, Y(t) = 0)

is given by

69 (9],
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1-D Stochastic Fluid Model Revisited

Matrix M

Let
e f,(x) = [f,(x);j], 0 < x < y, be the inverse of e@+()Y
@ M= [M;]foralli,j € S; US,, where

M,‘j = / fgx(X),'jdX
x=0

_ | My My
o M=
My Mx
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1-D Stochastic Fluid Model Revisited

Alternative Expression for M

Matrix M is given by

Moy M

. WM, (l = \UE)_1\|’
- [ =(1—-w=)"! =M,

o (]
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1-D Stochastic Fluid Model Revisited

New Riccati Equation for w

v+ WM21W = M12

Compare with

Q2 + Q11 V¥V +WQxn + VAW =0

45/59



Stochastic Fluid-Fluid Model

Definition of a Fluid-Fluid Model

Let {(x(t), X(t), Y(t)),t > 0} be a process such that

@ {(p(t),X(t)),t >0} isa 1-D FM with set of phases S,
generator T and rates ¢;

@ {(p(t), X(t)),t > 0} is the driving process
@ Y(t) is the level of the Fluid Model with rates r;(x)
@ X(t) € (—o0,+00) or X(t) >0

e Y(H)>0
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Stochastic Fluid-Fluid Model

Buffer X Buffer Y
ax(t) _
e ¢i when o(t)=1i
dy(t
dg‘) =ri(x) when o(t) =i, X(t) = x-and Y(t) >0
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Stochastic Fluid-Fluid Model

Example - Hydro-Power Generator

If the generator is newer, it may operate more efficiently,
produce more energy and require less-costly maintenance.

To model this, let

@ o(t) € {1,2,3,4,5,6} be the phase at time ¢
@ X(t) € [0, 1] be the deterioration level, with rates ¢;

@ Y(t) be the total revenue level, with rates r;(x)
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Stochastic Fluid-Fluid Model

Analysis Overview: Operator-Analytic Methods

@ Derive the generator B of {((t), X(t)),t > 0}

with respect to time

@ Derive the generator D of the Fluid-Fluid Model

with respect to the in-out fluid in the process {Y(f); t > 0}
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Stochastic Fluid-Fluid Model

Some Notation

@ F = Borel-measurable set of all possible values of X(t)
o FM(k) = {u: rx(u) >0} for given k € S

o FO)(k) = {u: rk(u) < 0} forgiven k € S

o FO(k)={u:rc(u) =0} forgivenk € S

@ S, ={ieS:FH)+#0}

0 S_={ieS:FOi)#M

o So={ies: FO) £ 0}
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Stochastic Fluid-Fluid Model

Definition of Operator V

Define the matrix of operators

V(t) = [‘/I'jem(t)]ieS(,jGSm;g,m€{+7*,0}

such that
wi Vi (1) (A)

is given by

/ dpl(x)Pla(t) = j, X(1) € Alp(0) = i, X(0) = A]
xeFO(i)
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Stochastic Fluid-Fluid Model

Interpretation of Operator V

wi Vi ()(A)

is the total probability of the process {(¢(t), X(t)),t > 0}
being in the destination set (j,.A) at time t,
assuming that it starts at time zero in the set (i, 7(9)(i))

according to the measure ¢
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Stochastic Fluid-Fluid Model

Expression for Generator B

V(t)=e?
B = [BMics, jeSmt.me{+,—0}
Case 1)forall £ € {+,—,0} and i € Sy, i # ,
WBM(A) = Tyul(An FO()
Case 2) forall ¢ € {+,—,0}, ¢ # m,
WBMA) = I(g > 0)ef(u)l(u # v)I(u € 9p (FO)))
~ (g < 0)guf()I(u £ V)I(v € ap (FO()))
~I(cj < )G (0)(v = 0)/(0 € \a(F(7)))
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Stochastic Fluid-Fluid Model

Case 3) otherwise

"B (A) = Tjn"(A)
+1(¢; > 0)I(u # v) {c,u/’" ug¢op (T)(I)>) - CjV'm(V)}
+1(¢; < 0)I(u # v) [cjuj’” —gy"(V)I(v ¢ Or <7)(/)))}

—I(¢; < 0)cf (0)I(v = 0)/(0 € 8L\H(]:( )(/)))
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Stochastic Fluid-Fluid Model

Definition of Operator U

Let U(ya S) = [Ugm(.ya s)]i68g7j68m;£,m€{+7—} be such that

U;"(y. s)

is given by

/ dp(x)E[e=>)
xeF (i)
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Stochastic Fluid-Fluid Model

Interpretation of Operator U

Hi Ui (y, 8)(A)

is the LST of the time taken for the total amount of fluid that has
flowed into or out of the buffer to reach y

and do so with the process {(¢(t), X(t)),t > 0} in the
destination set (j,.A)

assuming the process starts in (i, F()(i)) at time zero
according to the measure ¢
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Stochastic Fluid-Fluid Model

Expression for Operator D

U(y,s) = e?V

where D(s) = [Df’"(s and

Y ):|i€Sg,j€Sm;€,mE{+,—}

Dim(s) = [R(f) (B(f’”) — sl + B0 (s/ — B(00))T B(°m>)} ,-,-

where R = diag(R\"));cs, is a diagonal matrix of operators
such that

RY(x, A) = I(x € A)

I()!
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Stochastic Fluid-Fluid Model

Theretical framework:
@ Transient

@ Stationary

Current work:
@ Numerical solutions for expressions involving operator

@ Discretization of a Fluid Model that preserves its important
statistical properties
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Stochastic Fluid-Fluid Model
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Thanks for listening!
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