Stationary distribution of the tandem fluid queue and its application[∗] to the accumulated priority queue

> Małgorzata O'Reilly^{1,3} Werner Scheinhardt² Hiska Boelema∗,²

> > ¹Discipline of Mathematics, University of Tasmania

²Department of Applied Mathematics, University of Twente

³ARC Centre of Excellence for Mathematical and Statistical Frontiers

Applied Probability @ The Rock 2017

Outline

[Analysis and numerical scheme](#page-9-0)

[Application to Accumulated Priority Queue](#page-36-0)^{*}

TFQ Model: two fluid queues driven by $\varphi(t)$

- CTMC $\{\varphi(t): t \geq 0\}$ with finite state space *S*, generator **T**
- \bullet Two fluid queues, contents *X*(*t*) and *Y*(*t*), both ∈ [0, ∞)

First queue $X(t)$ driven by $\varphi(t)$

- \bullet ($\varphi(t)$, $X(t)$) is standard fluid queue
- \bullet Fluid rates in **R** = *diag*(r_i)_{*i∈S*}

$$
\frac{d}{dt}X(t) = r_{\varphi(t)} \quad \text{when } X(t) > 0,
$$
\n
$$
\frac{d}{dt}X(t) = \max(0, r_{\varphi(t)}) \quad \text{when } X(t) = 0.
$$

- $S = S_+ \cup S_-\cup S_0$, e.g. $S_+ = \{i \in S : r_i > 0\}$ (upstates, downstates, zero-states)
- also: $S_{\ominus} = S_{-} \cup S_{\ominus}$ ("zero-states at $X(t) = 0$ ")

• after ordering,

$$
\mathbf{T} = \left[\begin{array}{cccc} \mathbf{T}_{++} & \mathbf{T}_{+-} & \mathbf{T}_{+ \bigcirc} \\ \mathbf{T}_{-+} & \mathbf{T}_{--} & \mathbf{T}_{- \bigcirc} \\ \mathbf{T}_{\bigcirc +} & \mathbf{T}_{\bigcirc -} & \mathbf{T}_{\bigcirc \bigcirc} \end{array} \right].
$$

Second queue $Y(t)$ driven by $(\varphi(t), X(t))$

- $\hat{\mathbf{C}} = \text{diag}(\hat{c}_i)_{i \in S}, \hat{c}_i > 0$, and
- $\breve{\mathbf{C}} = \textit{diag}(\breve{c}_i)_{i \in \mathcal{S}_{\ominus}}, \breve{c}_i < 0.$
- *Y*(*t*) increases when *X*(*t*) > 0, at rate $\hat{c}_{\varphi(t)}$
- $Y(t)$ decreases when $X(t) = 0$, at rate $\widetilde{c}_{\varphi(t)}$ (unless $Y(t) = 0$).

That is,

$$
\frac{d}{dt}Y(t) = \hat{c}_{\varphi(t)} > 0
$$
\n
$$
\frac{d}{dt}Y(t) = \check{c}_{\varphi(t)} < 0
$$
\n
$$
\frac{d}{dt}Y(t) = \hat{c}_{\varphi(t)} \cdot 1\{\varphi(t) \in S_+\}
$$

*w*hen $X(t) > 0$, *c* $x(t) = 0, Y(t) > 0$, $\mathsf{when}\; X(t) = 0,\, Y(t) = 0.$

Qualitative behaviour

Assuming stability (see paper) process $(\varphi(t), X(t), Y(t))$ alternates between:

(i) periods on $x = 0$

(ii) periods on $x > 0$

Qualitative behaviour (i) on $x = 0$

(i) periods on $x = 0$

- \blacktriangleright *Y*(*t*) decreasing, unless at *x* = 0, *y* = 0
- $\blacktriangleright \varphi(t)$ in S_{\ominus}
- **►** starts at $x = 0, y > 0$, with $\varphi(t)$ in $S_$
- **• ends at** $x = 0, y \ge 0$ **, with** $\varphi(t)$ **jumping from** S_{\ominus} **to** S_{+}

Qualitative behaviour (ii) on *x* > 0

(ii) periods on $x > 0$

- \blacktriangleright *Y*(*t*) increasing (while *X*(*t*) can either increase or decrease)
- $\blacktriangleright \varphi(t)$ in S (any phase)
- **►** starts at $x = 0, y \ge 0$, with $\varphi(t) \in S_+$
- \triangleright ends at *x* = 0, *y* > 0, with $\varphi(t) \in S_$ −

Stationary distribution

has following form (all *vectors* with $|S|$ components):

- (i) \rightarrow 1-dimensional densities $\pi(0, y)$ at $x = 0, y > 0$
	- point masses $p(0, 0)$ at (0, 0)
- (ii) \rightarrow 2-dimensional densities $\pi(x, y)$ on $\{(x, y) : x > 0, y > x \cdot min_{i \in S_+} {\hat{c}_i}/{r_i}\}$
	- \triangleright 1-dimensional density $\pi^{i}(X, \hat{xG}_{i}/r_{i})$
on line *v* − \hat{xG}_{i}/r_{i} *i* ∈ *S* on line $y = x\widehat{c}_i/r_i$, $i \in S_+$

Approach

- **•** Introduce embedded discrete-time process J_k
- Find its stationary distribution ξ*^y*
- Express $\pi(0,y)$ and $\mathsf{p}(0,0)$ in ξ_y , using down-shift in $\mathsf Y$
- Normalise based on knowledge of $(\varphi(t), X(t))$
- Express $\pi(x, y)$ in $\pi(0, y)$ and $\mathbf{p}(0, 0)$, using up-shift in Y
- Express $\pi^{i}(x, x\hat{c}_{i}/r_{i})$ in $\mathbf{p}(0, 0)$

Mostly as LST's (but not always)

(i) down-shift: $\overline{\mathsf{X}}$ $\mathbf{Q}_{\ominus\ominus}$ and $\overline{\mathbf{v}}$ $\mathbf{Q}_{\ominus +}$

Let $D(t) = \int_{u=0}^{t} |\breve{c}_{\varphi(u)}| du$ and $t_z = \inf\{t > 0 : D(t) = z\}.$

Define

$$
\breve{\boldsymbol{Q}}_{\ominus \ominus} = (|\breve{\boldsymbol{C}}_{\ominus}|)^{-1} \boldsymbol{T}_{\ominus \ominus}, \qquad \breve{\boldsymbol{Q}}_{\ominus +} = (|\breve{\boldsymbol{C}}_{\ominus}|)^{-1} \boldsymbol{T}_{\ominus +}.
$$

Then for $i, j \in S_{\cap}$, and $z > 0$,

$$
[e^{\check{\mathbf{Q}}_{\Theta}Z}]_{ij} \;=\; \mathcal{P}(\varphi(t_z) = j, \varphi(u) \in \mathcal{S}_{\Theta}, 0 \leq u \leq t_z \mid \varphi(0) = i, X(0) = 0)
$$

and \geq ${\bf Q}_{\ominus +}$ is a matrix of transition rates (w.r.t. level) to phases in \mathcal{S}_+ (for times at which *X* and *Y* start increasing).

[Bean, O'Reilly and Taylor. Hitting probabilities and hitting times for stochastic fluid flows, *Stochastic Processes and their Applications*, 2005]

(ii) up-shift: $\hat{\mathbf{Q}}(s)$ and $\hat{\mathbf{\Psi}}(s)$

Let
$$
\theta = \inf\{t > 0 : X(t) = 0\}
$$
 and $U(t) = \int_{u=0}^{t} \widehat{c}_{\varphi(u)} du$.

Then *U*(θ) is total up-shift in *Y* during Busy Period of *X*.

Its $|S_+| \times |S_-|$ density matrix $\hat{\psi}(z)$ is given via LST

$$
\widehat{\Psi}(s) = \int_{z=0}^{\infty} e^{-sz} \widehat{\psi}(z) dz
$$

with

$$
[\widehat{\Psi}(s)]_{ij} = E(e^{-sU(\theta)}1\{\varphi(\theta) = j\} | \varphi(0) = i, X(0) = 0).
$$

[Bean and O'Reilly. A stochastic two-dimensional fluid model, *Stochastic Models*, 2013]

(ii) up-shift: $\widehat{\mathbf{Q}}(s)$ and $\widehat{\mathbf{\Psi}}(s)$

To find $\hat{\mathbf{\Psi}}(s)$ define Key generator matrix

$$
\widehat{\mathbf{Q}}(s) = \begin{bmatrix}\n\widehat{\mathbf{Q}}(s)_{++} & \widehat{\mathbf{Q}}(s)_{+-} \\
\widehat{\mathbf{Q}}(s)_{-+} & \widehat{\mathbf{Q}}(s)_{--}\n\end{bmatrix}
$$
\n
$$
\widehat{\mathbf{Q}}(s)_{++} = (\mathbf{R}_{+})^{-1} \left(\mathbf{T}_{++} - s\widehat{\mathbf{C}}_{+} - \mathbf{T}_{+0} (\mathbf{T}_{\odot\odot} - s\widehat{\mathbf{C}}_{\odot})^{-1} \mathbf{T}_{\odot+} \right)
$$
\n
$$
\widehat{\mathbf{Q}}(s)_{+-} = (\mathbf{R}_{+})^{-1} \left(\mathbf{T}_{+-} - \mathbf{T}_{+\odot} (\mathbf{T}_{\odot\odot} - s\widehat{\mathbf{C}}_{\odot})^{-1} \mathbf{T}_{\odot-} \right)
$$
\n
$$
\widehat{\mathbf{Q}}(s)_{-+} = (|\mathbf{R}_{-}|)^{-1} \left(\mathbf{T}_{-+} - \mathbf{T}_{-\odot} (\mathbf{T}_{\odot\odot} - s\widehat{\mathbf{C}}_{\odot})^{-1} \mathbf{T}_{\odot+} \right)
$$
\n
$$
\widehat{\mathbf{Q}}(s)_{--} = (|\mathbf{R}_{-}|)^{-1} \left(\mathbf{T}_{--} - s\widehat{\mathbf{C}}_{-} - \mathbf{T}_{-\odot} (\mathbf{T}_{\odot\odot} - s\widehat{\mathbf{C}}_{\odot})^{-1} \mathbf{T}_{\odot-} \right).
$$

Then $\hat{\Psi}(s)$ is minimum nonnegative solution of Riccati eq.

$$
\widehat{\mathbf{Q}}(s)_{+-}+\widehat{\mathbf{Q}}(s)_{++}\widehat{\mathbf{\Psi}}(s)+\widehat{\mathbf{\Psi}}(s)\widehat{\mathbf{Q}}(s)_{--}+\widehat{\mathbf{\Psi}}(s)\widehat{\mathbf{Q}}(s)_{-+}\widehat{\mathbf{\Psi}}(s)=\mathbf{0}.
$$

[Bean and O'Reilly. A stochastic two-dimensional fluid model, *Stochastic Models*, 2013]

Let $J_k = (\varphi(\theta_k), Y(\theta_k))$ be with state space $S_-\times (0,\infty)$, where θ_k is *k*-th time that $(\varphi(t), X(t), Y(t))$ hits $x = 0$.

Lemma

The transition kernel of J^k is given by

$$
\begin{array}{lll} \displaystyle \mathbf{P}_{z,y} &=& \displaystyle \int_{u=[z-y]^+}^{z} \left[\begin{array}{cc} \mathbf{I} & \mathbf{O} \end{array} \right] e^{\check{\mathbf{Q}}_{\ominus\ominus}u} \check{\mathbf{Q}}_{\ominus+}\hat{\psi}(y-z+u) du \\ &+ \left[\begin{array}{cc} \mathbf{I} & \mathbf{O} \end{array} \right] e^{\check{\mathbf{Q}}_{\ominus\ominus}z} (-\check{\mathbf{Q}}_{\ominus\ominus})^{-1} \check{\mathbf{Q}}_{\ominus+}\hat{\psi}(y) \end{array}
$$

 $\mathsf{where} \; [x]^+ \; \text{denotes} \; \max(0,x), \; \text{and} \; [\; \mathbf{I} \; \; \mathbf{O} \; \;] \; \text{is a} \; |\mathcal{S}_-| \times |\mathcal{S}_\ominus| \; \text{matrix}.$

X(*t*)

Corollary

The Laplace-Stieltjes transform of **P***z*,*^y w.r.t. y is given by*

$$
\begin{array}{rcl} \displaystyle \mathbf{P}_{z,\cdot}(s) & = & \displaystyle \left[\begin{array}{cc} \mathbf{I} & \mathbf{O} \end{array} \right] e^{-sz} \left(\check{\mathbf{Q}}_{\ominus\ominus} + s\mathbf{I} \right)^{-1} \left(e^{\left(\check{\mathbf{Q}}_{\ominus\ominus} + s\mathbf{I} \right)z} - \mathbf{I} \right) \\[1mm] && \times \check{\mathbf{Q}}_{\ominus+} \widehat{\mathbf{\Psi}}(s) \\[1mm] && + \displaystyle \left[\begin{array}{cc} \mathbf{I} & \mathbf{O} \end{array} \right] e^{\check{\mathbf{Q}}_{\ominus\ominus}z} (-\check{\mathbf{Q}}_{\ominus\ominus})^{-1} \check{\mathbf{Q}}_{\ominus+} \widehat{\mathbf{\Psi}}(s). \end{array}
$$

Stationary distribution of J_k is given by row vector $\xi_z = [\xi_{i,z}]_{i \in S}$ of densities, satisfying

$$
\begin{cases}\n\int_{z=0}^{\infty} \xi_z \mathbf{P}_{z,y} dz = \xi_y \\
\int_{y=0}^{\infty} \xi_y dy \mathbf{1} = 1\n\end{cases}
$$

will be solved numerically.

Next step:

Express stationary distribution of $(\varphi(t), X(t), Y(t))$ at level $x = 0$ in terms of ξ*^z* .

Expressing $\pi(0, y)$ and $\mathbf{p}(0, 0)$ in ξ_y

Expressing $\pi(0, y)$ and $\mathbf{p}(0, 0)$ in ξ_y

Lemma

We have $\pi(0, y) = \begin{bmatrix} 0 & \pi(0, y) \end{bmatrix}$, where

$$
\pi(0,y)_{\ominus} = \alpha \int_{z=y}^{\infty} \left[\xi_z \quad \mathbf{0} \right] e^{\widetilde{\mathbf{Q}}_{\ominus\ominus}(z-y)} (|\widecheck{\mathbf{C}}_{\ominus}|)^{-1} dz,
$$

 $and \n\begin{bmatrix} \n\mathbf{p}(0,0) = \n\end{bmatrix}$ **p** $(0,0)_{\ominus}$ $],$ where

$$
\textbf{p}(0,0)_{\ominus} = \alpha \int_{z=0}^{\infty} \left[\begin{array}{cc} \boldsymbol{\xi}_z & \textbf{0} \end{array} \right] e^{\check{\textbf{Q}}_{\ominus \ominus} z} dz (-\textbf{T}_{\ominus \ominus})^{-1}.
$$

Here, α is a normalizing constant and the total rate of hitting $x = 0$.

Expressing $\pi(0, y)$ and $\mathbf{p}(0, 0)$ in ξ_{ν}

Define LST of density part

$$
\pi(0,\cdot)(s)=\int_{z=0}^\infty e^{-sy}\pi(0,y)dy.
$$

Corollary

We have $\pi(0, \cdot)(s) = \begin{bmatrix} 0 & \pi(0, \cdot)(s) \end{bmatrix}$, where

$$
\begin{array}{lcl} \pi(0,\cdot)(s)_{\ominus} & = & \alpha \displaystyle \int_{z=0}^{\infty} \left[\begin{array}{cc} \xi_z & \textbf{0} \end{array} \right] e^{\check{\textbf{Q}}_{\ominus\ominus}z} (\check{\textbf{Q}}_{\ominus\ominus} + s\textbf{I})^{-1} \\ & \times \left(\textbf{I} - e^{-(\check{\textbf{Q}}_{\ominus\ominus} + s\textbf{I})z} \right) (|\check{\textbf{C}}_{\ominus}|)^{-1} dz. \end{array}
$$

Normalise, based on 1-dim fluid queue $(\varphi(t), X(t))$

Lemma

The normalising constant α *is given by*

$$
\alpha = \left\{ \begin{bmatrix} \xi & \mathbf{0} \end{bmatrix} (-\mathbf{T}_{\ominus \ominus})^{-1} \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ +\mathbf{T}_{\ominus+} \mathbf{K}^{-1} \begin{bmatrix} (\mathbf{R}_{+})^{-1} & \Psi(|\mathbf{R}_{-}|)^{-1} \end{bmatrix} \right. \\ \times \left. \left(\mathbf{1} + \mathbf{T}_{\pm \ominus} (-\mathbf{T}_{\ominus \ominus})^{-1} \mathbf{1} \right) \right) \right\}^{-1},
$$

 $\hat{\mathbf{R}} = \int_{z=0}^{\infty} \xi_z dz$, $\mathbf{\Psi} = \widehat{\mathbf{\Psi}}(\mathbf{s})|_{s=0}$ and $\mathbf{K} = \widehat{\mathbf{K}}(\mathbf{s})|_{s=0}$ with $\widehat{\mathbf{K}}(s) = \widehat{\mathbf{Q}}(s)_{++} + \widehat{\mathbf{\Psi}}(s)\widehat{\mathbf{Q}}(s)_{-+}.$

Normalise, based on 1-dim fluid queue $(\varphi(t), X(t))$

Proof. Integrating $\pi(0, y)$ and adding $p(0, 0)$ yields the probability mass vector of $\varphi(t)$ at $x = 0$,

$$
\left[\begin{array}{cc} \mathbf{p}_- & \mathbf{p}_\odot \end{array}\right] = \alpha \left[\begin{array}{cc} \xi & \mathbf{0} \end{array}\right] \left(-\mathbf{T}_{\ominus\ominus}\right)^{-1}.
$$

Similarly, we have expression for density $\pi(x)$ at $x > 0$,

$$
\left[\begin{array}{cc} \pi(x)_+ & \pi(x)_- \end{array} \right] = \left[\begin{array}{cc} \mathbf{p}_- & \mathbf{p}_\odot \end{array} \right] \mathbf{T}_{\ominus+} e^{\mathbf{K}x} \left[\begin{array}{cc} (\mathbf{R}_+)^{-1} & \Psi(|\mathbf{R}_-|)^{-1} \end{array} \right],
$$

$$
\pi(x)_\odot = \left[\begin{array}{cc} \pi(x)_+ & \pi(x)_- \end{array} \right] \mathbf{T}_{\pm\odot}(-\mathbf{T}_{\odot\odot})^{-1}.
$$

Now solve α from

$$
p1+\int_{x=0}^{\infty}\pi(x)dx1=1.
$$

Expressing $\pi(x, y)$ in $\pi(0, y)$ and $\mathbf{p}(0, 0)$

Expressing $\pi(x, y)$ in $\pi(0, y)$ and $\mathbf{p}(0, 0)$

Lemma

We have

$$
\pi(x,\cdot)(s) = \begin{bmatrix} \pi(x,\cdot)(s)_{+} & \pi(x,\cdot)(s)_{-} & \pi(x,\cdot)(s)_{\circ} \end{bmatrix}
$$

$$
\begin{aligned} \left[\begin{array}{cc} \pi(x,\cdot)(s)_+ & \pi(x,\cdot)(s)_- \end{array} \right] &= \left(\pi(0,\cdot)(s)_\ominus + \mathbf{p}(0,0)_\ominus \right) \\ &\times \mathbf{T}_{\ominus+}e^{\hat{\mathbf{K}}(s)x} \times \left[\begin{array}{cc} (\mathbf{R}_+)^{-1} & \widehat{\Psi}(s)(|\mathbf{R}_-|)^{-1} \end{array} \right], \end{aligned}
$$

and

with

$$
\pi(x,\cdot)(s)_{\circ} = [\pi(x,\cdot)(s)_{+} \pi(x,\cdot)(s)_{-}] \times T_{\pm\circ} (s\widehat{C}_{\circ} - T_{\circ\circ})^{-1}.
$$

Expressing $\pi(x, y)$ in $\pi(0, y)$ and $\mathbf{p}(0, 0)$

Let
$$
\pi(\cdot, \cdot)(v, s) = \int_{x=0}^{\infty} e^{-vx} \pi(x, \cdot)(s) dx.
$$

Corollary

We have

$$
\pi(\cdot,\cdot)(\textit{V},s)=\left[\begin{array}{ccc}\pi(\cdot,\cdot)(\textit{V},s)_+ & \pi(\cdot,\cdot)(\textit{V},s)_- & \pi(\cdot,\cdot)(s)_\odot\end{array}\right]
$$

with

$$
\left[\begin{array}{cc} \pi(\cdot,\cdot)(\nu,s)_+ & \pi(\cdot,\cdot)(\nu,s)_- \end{array}\right] = \left(\pi(0,\cdot)(s)_{\ominus} + \mathsf{p}(0,0)_{\ominus}\right) \\ \times \left[\begin{array}{cc} \mathsf{T}_{-+} \\ \mathsf{T}_{\ominus+} \end{array}\right] (-\hat{\mathsf{K}}(s) + \nu \mathsf{I})^{-1} \left[\begin{array}{cc} (\mathsf{R}_+)^{-1} & \widehat{\Psi}(s)(|\mathsf{R}_-|)^{-1} \end{array}\right]
$$

and

$$
\pi(\cdot,\cdot)(s)_{\circlearrowright} = \left[\begin{array}{cc} \pi(\cdot,\cdot)(s)_{+} & \pi(\cdot,\cdot)(s)_{-} \end{array} \right] \mathbf{T}_{\pm \circlearrowright} \times (s\widehat{\mathbf{C}}_{\circlearrowright} - \mathbf{T}_{\circlearrowright \circlearrowright})^{-1}.
$$

Expressing $\pi^{i}(x, x\widehat{c}_{i}/r_{i})$ in $\mathbf{p}(0, 0)$

Lemma

For all i \in S_+ ,

$$
\pi^i(x, \hat{xG}_i/r_i) = \sum_{j \in \mathcal{S}_{\ominus}} \mathbf{p}_j(0,0) T_{ji} \exp(-(T_{ii}/r_i)x)/r_i.
$$

Numerical scheme: $(ℓ - 1)∆u ≤ z ≤ ℓ∆u$

$$
Y(t)
$$
\n
$$
L\Delta u
$$
\n
$$
(L-1)\Delta u
$$
\n
$$
(\ell-1)\Delta u
$$
\n
$$
(\ell-1)\Delta u
$$
\n
$$
2\Delta u
$$
\n
$$
\Delta u
$$

X(*t*)

Numerical scheme

• Truncate and discretize the state space of J_k to get the DTMC $\{\bar{J}_k : k = 0, 1, 2, \ldots\}$ with state space $\{(i, \ell) : i \in S_-, \ell = 1, 2, \ldots L\}$

and matrix $\bar{\bm{\mathsf{P}}} = [\bar{\bm{\mathsf{P}}}_{\ell m}]_{\ell,m=0,1,2,...,L}$ made up of block matrices $\bar{\mathsf{P}}_{\ell m} = [\bar{P}_{i,\ell; j,m}]_{i,j\in\mathcal{S}_-}$, where

$$
\bar{P}_{i,\ell;j,m}=P(\bar{J}_{k+1}=(j,m)\mid \bar{J}_k=(i,\ell)).
$$

• Get P by approximating

$$
\bar{\mathbf{P}}_{\ell m} = \int_{y=(m-1)\Delta u}^{m\Delta u} \mathbf{P}_{\ell\Delta u,y} dy \approx \Delta u \mathbf{P}_{\ell\Delta u,m\Delta u},
$$

and normalizing so that $\sum_{m=0}^{L} \bar{\mathsf{P}}_{\ell m} \mathsf{1} = \mathsf{1}.$

• Find
$$
\bar{\xi}_{\ell} = [\bar{\xi}_{j;\ell}]_{j \in S_-}
$$
 by solving $\bar{\xi} \bar{\mathbf{P}} = \bar{\xi}, \quad \bar{\xi} \mathbf{1} = \mathbf{1}.$

Numerical scheme

Use this this to approximate

$$
\mathbf{p}(0,0)_{\ominus} \;\; \approx \;\; \alpha \sum_{\ell=1}^{L} \left[\begin{array}{cc} \bar{\xi}_{\ell} & \mathbf{0} \end{array} \right] e^{\check{\mathbf{Q}}_{\ominus\ominus}\ell\Delta u} (-\mathbf{T}_{\ominus\ominus})^{-1}
$$

and

$$
\begin{array}{rcl}\pi(0,\cdot)(s)_{\ominus}&\approx& \alpha\displaystyle\sum_{\ell=1}^L\left[\begin{array}{cc} \bar{\xi}_{\ell} & \textbf{0}\end{array}\right]e^{\check{\mathbf{Q}}_{\ominus\ominus}\ell\Delta u}(\check{\mathbf{Q}}_{\ominus\ominus}+s\mathbf{I})^{-1}\\&\times\left(\mathbf{I}-e^{-(\check{\mathbf{Q}}_{\ominus\ominus}+s\mathbf{I})\ell\Delta u}\right)(|\check{\mathbf{C}}_{\ominus}|)^{-1}.\end{array}
$$

• Evaluate $\pi(x, \cdot)(s)$ and invert using Abate and Whitt.

Numerical Example

We consider a process with the following parameters: $S = \{1, 2\},\$ *r*₁ = 2, *r*₂ = −6, $\hat{c}_1 = \hat{c}_2 = 2$, $\check{c}_1 = \check{c}_2 = -3$, and

$$
\mathbf{T} = \left[\begin{array}{rr} -2 & 2 \\ 1 & -1 \end{array} \right]
$$

.

This simple process is similar to the model studied in Kroese and Scheinhardt (2011) and Werner (1998)

(but different from the numerical example analysed there).

[D.P. Kroese and W.R.W. Scheinhardt. Joint Distributions for Interacting Fluid Queues. *Queueing Systems*, 2001.]

[W.R.W. Scheinhardt, PhD Thesis, 1998.]

Simulated values $(X(t), Y(t))$, $0 \le t \le 10^5$

The estimated values $[\xi_z]_j$ for $j=2$

The estimated values $[\pi(0,y)]_j$ for $j=2$

The estimated values $[\pi(x, y)]_j$ for $j = 1, x = 1, \ldots, 5$

Two-class Accumulating Priority Queue

- Single-server queue with PH service time
- Customer classes $i = 1, 2$
- Poisson arrivals with rates λ_i for $i=1,2$
- Class *i* customer accumulates priority at rate *bⁱ* (Upon arrival) with $b_1 > b_2$
- • Customer with the highest accumulated priority commences service (After completion of service).

Maximum Priority Process **M**

- Let *Mi*(*t*) be the least upper bound for all class *i* customers present in the queue at time *t*.
- \bullet Maximum Priority Process $\mathbf{M} = \{ (M_1(t), M_2(t)) ; t \geq 0 \}.$
- We are interested in the stationary distribution of **M** embedded at the moments of commencement of service.

Result

- We map **M** to a certain TFQ $\{(\varphi(t), Z(t), M_2(t)) ; t \ge 0\}.$
- The stationary distribution of $\{(\varphi(t), Z(t), M_2(t)); t \ge 0\}$ can be obtained using our results discussed above.
- The stationary distribution of **M** embedded at the moments of commencement of service

is equivalent to the part of the stationary distribution of $\{(\varphi(t), Z(t), M_2(t)); t \ge 0\}$ corresponding to down-phase −.

[M. M. O'Reilly and W. R. W. Scheinhardt. Stationary distributions for a class of Markov-modulated tandem fluid queues. *Submitted to Stochastic Models*, 2016.]

Future work

• Numerical analysis for the accumulating priority queue.

Analysis of the dual model.

- ¹ J. Abate and W. Whitt. Numerical inversion of Laplace transforms of probability distributions. *ORSA Journal of Computing*, 7(1):36–43, 1995.
- ² N.G. Bean and M.M. O'Reilly. A stochastic two-dimensional fluid model. *Stochastic Models*, 29(1):31–63, 2013.
- ³ N.G. Bean and M.M. O'Reilly. The Stochastic Fluid-Fluid Model: A Stochastic Fluid Model driven by an uncountable-state process, which is a Stochastic Fluid Model itself. *Stochastic Processes and Their Applications*, 124(5):1741–1772, 2014.
- ⁴ D.P. Kroese and W.R.W. Scheinhardt. Joint Distributions for Interacting Fluid Queues. *Queueing Systems*, 37:99–139, 2001.
- ⁵ M. M. O'Reilly and W. R. W. Scheinhardt. Stationary distributions for a class of Markov-modulated tandem fluid queues. *Submitted to Stochastic Models*, 2016.
- ⁶ D. A. Stanford, P. Taylor, and I. Ziedins. Waiting time distributions in the accumulating priority queue. *Queueing Systems*, vol. 7, no. 3, pp. 297-330, 2014.
- ⁷ W.R.W. Scheinhardt, "Markov-modulated and feedback fluid queues," PhD Thesis, University of Twente, Netherlands, 1998.

Thank you for listening!

