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Tandem Fluid Queue (TFQ) Model

TFQ Model: two fluid queues driven by ϕ(t)

CTMC {ϕ(t) : t ≥ 0} with finite state space S, generator T

Two fluid queues, contents X (t) and Y (t), both ∈ [0,∞)
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Tandem Fluid Queue (TFQ) Model

First queue X (t) driven by ϕ(t)

(ϕ(t),X (t)) is standard fluid queue
Fluid rates in R = diag(ri)i∈S

d
dt

X (t) = rϕ(t) when X (t) > 0,

d
dt

X (t) = max(0, rϕ(t)) when X (t) = 0.

S = S+ ∪ S− ∪ S#, e.g. S+ = {i ∈ S : ri > 0}
(upstates, downstates, zero-states)
also: S	 = S− ∪ S# (“zero-states at X (t) = 0”)
after ordering,

T =

 T++ T+− T+#

T−+ T−− T−#
T#+ T#− T##

 .
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Tandem Fluid Queue (TFQ) Model

Second queue Y (t) driven by (ϕ(t),X (t))

Ĉ = diag(ĉi)i∈S , ĉi > 0, and

Ĉ = diag(ĉ i)i∈S	 , ĉ i < 0.

Y (t) increases when X (t) > 0, at rate ĉϕ(t)

Y (t) decreases when X (t) = 0, at rate ĉϕ(t)
(unless Y (t) = 0).

That is,

d
dt

Y (t) = ĉϕ(t) > 0 when X (t) > 0,

d
dt

Y (t) = ĉϕ(t) < 0 when X (t) = 0,Y (t) > 0,

d
dt

Y (t) = ĉϕ(t) · 1{ϕ(t) ∈ S+} when X (t) = 0,Y (t) = 0.
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Tandem Fluid Queue (TFQ) Model

Qualitative behaviour

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)

Assuming stability (see paper) process (ϕ(t),X (t),Y (t)) alternates
between:

(i) periods on x = 0
(ii) periods on x > 0
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Tandem Fluid Queue (TFQ) Model

Qualitative behaviour (i) on x = 0

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t
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Y(t)

X(t)

Y(t)

(i) periods on x = 0
I Y (t) decreasing, unless at x = 0, y = 0
I ϕ(t) in S	
I starts at x = 0, y > 0, with ϕ(t) in S−
I ends at x = 0, y ≥ 0, with ϕ(t) jumping from S	 to S+
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Tandem Fluid Queue (TFQ) Model

Qualitative behaviour (ii) on x > 0

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t
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Y(t)

X(t)

Y(t)

(ii) periods on x > 0
I Y (t) increasing (while X (t) can either increase or decrease)
I ϕ(t) in S (any phase)
I starts at x = 0, y ≥ 0, with ϕ(t) ∈ S+

I ends at x = 0, y > 0, with ϕ(t) ∈ S−
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Tandem Fluid Queue (TFQ) Model

Stationary distribution

has following form (all vectors with |S| components):

(i) I 1-dimensional densities π(0, y)
at x = 0, y > 0

I point masses p(0,0)
at (0,0)

(ii) I 2-dimensional densities π(x , y)
on {(x , y) : x > 0, y > x ·mini∈S+

{ĉi/ri}}
I 1-dimensional density πi (x , xĉi/ri )

on line y = xĉi/ri , i ∈ S+
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Analysis and numerical scheme

Approach

Introduce embedded discrete-time process Jk

Find its stationary distribution ξy

Express π(0, y) and p(0,0) in ξy , using down-shift in Y
Normalise based on knowledge of (ϕ(t),X (t))

Express π(x , y) in π(0, y) and p(0,0), using up-shift in Y
Express πi(x , xĉi/ri) in p(0,0)

Mostly as LST’s (but not always)
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Analysis and numerical scheme

(i) down-shift: Q̂		 and Q̂	+

Let D(t) =
∫ t

u=0 |ĉϕ(u)|du and tz = inf{t > 0 : D(t) = z}.

Define
Q̂		 = (|Ĉ	|)−1T		, Q̂	+ = (|Ĉ	|)−1T	+.

Then for i , j ∈ S	, and z > 0,

[eQ̂		z ]ij = P(ϕ(tz) = j , ϕ(u) ∈ S	,0 ≤ u ≤ tz | ϕ(0) = i ,X (0) = 0)

and Q̂	+ is a matrix of transition rates (w.r.t. level) to phases in S+

(for times at which X and Y start increasing).

[Bean, O’Reilly and Taylor. Hitting probabilities and hitting times for stochastic fluid
flows, Stochastic Processes and their Applications, 2005]
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Analysis and numerical scheme

(ii) up-shift: Q̂(s) and Ψ̂(s)

Let θ = inf{t > 0 : X (t) = 0} and U(t) =
∫ t

u=0 ĉϕ(u)du.

Then U(θ) is total up-shift in Y during Busy Period of X .

Its |S+| × |S−| density matrix ψ̂(z) is given via LST

Ψ̂(s) =

∫ ∞
z=0

e−szψ̂(z)dz

with
[Ψ̂(s)]ij = E(e−sU(θ)1{ϕ(θ) = j} | ϕ(0) = i ,X (0) = 0).

[Bean and O’Reilly. A stochastic two-dimensional fluid model, Stochastic Models,
2013]
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Analysis and numerical scheme

(ii) up-shift: Q̂(s) and Ψ̂(s)

To find Ψ̂(s) define Key generator matrix

Q̂(s) =

[
Q̂(s)++ Q̂(s)+−
Q̂(s)−+ Q̂(s)−−

]

Q̂(s)++ = (R+)−1
(

T++ − sĈ+ − T+#(T## − sĈ#)−1T#+

)
Q̂(s)+− = (R+)−1

(
T+− − T+#(T## − sĈ#)−1T#−

)
Q̂(s)−+ = (|R−|)−1

(
T−+ − T−#(T## − sĈ#)−1T#+

)
Q̂(s)−− = (|R−|)−1

(
T−− − sĈ− − T−#(T## − sĈ#)−1T#−

)
.

Then Ψ̂(s) is minimum nonnegative solution of Riccati eq.

Q̂(s)+− + Q̂(s)++Ψ̂(s) + Ψ̂(s)Q̂(s)−− + Ψ̂(s)Q̂(s)−+Ψ̂(s) = O.

[Bean and O’Reilly. A stochastic two-dimensional fluid model, Stochastic Models,
2013]
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Analysis and numerical scheme

Embedded process Jk

Let Jk = (ϕ(θk ),Y (θk )) be with state space S− × (0,∞),

where θk is k -th time that (ϕ(t),X (t),Y (t)) hits x = 0.

Lemma
The transition kernel of Jk is given by

Pz,y =

∫ z

u=[z−y ]+

[
I O

]
eQ̂		uQ̂	+ψ̂(y − z + u)du

+
[

I O
]

eQ̂		z(−Q̂		)−1Q̂	+ψ̂(y)

where [x ]+ denotes max(0, x), and
[

I O
]

is a |S−| × |S	| matrix.
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Analysis and numerical scheme

Embedded process Jk

X (t)

Y (t)

z − u

z

y

ψ̂(y − z + u)
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Analysis and numerical scheme

Embedded process Jk

X (t)

Y (t)

z

y

•

ψ̂(y)
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Analysis and numerical scheme

Embedded process Jk

Corollary
The Laplace-Stieltjes transform of Pz,y w.r.t. y is given by

Pz,·(s) =
[

I O
]

e−sz
(

Q̂		 + sI
)−1

(
e
(

Q̂		+sI
)

z − I
)

×Q̂	+Ψ̂(s)

+
[

I O
]

eQ̂		z(−Q̂		)−1Q̂	+Ψ̂(s).
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Analysis and numerical scheme

Embedded process Jk

Stationary distribution of Jk is given by row vector ξz = [ξi,z ]i∈S− of
densities, satisfying 

∫∞
z=0 ξzPz,ydz = ξy∫∞
y=0 ξydy1 = 1

will be solved numerically.

Next step:

Express stationary distribution of (ϕ(t),X (t),Y (t)) at level x = 0 in
terms of ξz .
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Analysis and numerical scheme

Expressing π(0, y) and p(0,0) in ξy

ri>0 ri<0

Ci>0
^ Ci<0

v

t

t

X(t)

Y(t)

X(t)

Y(t)
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Analysis and numerical scheme

Expressing π(0, y) and p(0,0) in ξy

Lemma

We have π(0, y) =
[

0 π(0, y)	
]
, where

π(0, y)	 = α

∫ ∞
z=y

[
ξz 0

]
eQ̂		(z−y)(|Ĉ	|)−1dz,

and p(0,0) =
[

0 p(0,0)	
]
, where

p(0,0)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		zdz(−T		)−1.

Here, α is a normalizing constant and the total rate of hitting x = 0.
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Analysis and numerical scheme

Expressing π(0, y) and p(0,0) in ξy

Y (t)

y

z ξz

π(0, y)

or

Y (t)

z ξz

• p(0,0)
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Analysis and numerical scheme

Expressing π(0, y) and p(0,0) in ξy

Define LST of density part

π(0, ·)(s) =

∫ ∞
z=0

e−syπ(0, y)dy .

Corollary

We have π(0, ·)(s) =
[

0 π(0, ·)(s)	
]
, where

π(0, ·)(s)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		z(Q̂		 + sI)−1

×
(

I− e−(Q̂		+sI)z
)

(|Ĉ	|)−1dz.
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Analysis and numerical scheme

Normalise, based on 1-dim fluid queue (ϕ(t),X (t))

Lemma
The normalising constant α is given by

α =

{[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(

1 + T±#(−T##)−11
))}−1

,

where, ξ =
∫∞

z=0 ξzdz, Ψ = Ψ̂(s)|s=0 and K = K̂(s)|s=0 with

K̂(s) = Q̂(s)++ + Ψ̂(s)Q̂(s)−+.
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Analysis and numerical scheme

Normalise, based on 1-dim fluid queue (ϕ(t),X (t))

Proof. Integrating π(0, y) and adding p(0,0) yields the probability
mass vector of ϕ(t) at x = 0,[

p− p#
]

= α
[
ξ 0

]
(−T		)−1 .

Similarly, we have expression for density π(x) at x > 0,[
π(x)+ π(x)−

]
=

[
p− p#

]
T	+eKx [ (R+)−1 Ψ(|R−|)−1

]
,

π(x)# =
[
π(x)+ π(x)−

]
T±#(−T##)−1.

Now solve α from
p1 +

∫ ∞
x=0

π(x)dx1 = 1.
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Analysis and numerical scheme

Expressing π(x , y) in π(0, y) and p(0,0)

X (t)

Y (t)

y

•
x
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Analysis and numerical scheme

Expressing π(x , y) in π(0, y) and p(0,0)

Lemma

We have

π(x , ·)(s) =
[
π(x , ·)(s)+ π(x , ·)(s)− π(x , ·)(s)#

]
with [

π(x , ·)(s)+ π(x , ·)(s)−
]

= (π(0, ·)(s)	 + p(0,0)	)

×T	+eK̂(s)x ×
[

(R+)−1 Ψ̂(s)(|R−|)−1
]
,

and

π(x , ·)(s)# =
[
π(x , ·)(s)+ π(x , ·)(s)−

]
×T±#(sĈ# − T##)−1.
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Analysis and numerical scheme

Expressing π(x , y) in π(0, y) and p(0,0)

Let π(·, ·)(v , s) =
∫∞

x=0 e−vxπ(x , ·)(s)dx .

Corollary

We have

π(·, ·)(v , s) =
[
π(·, ·)(v , s)+ π(·, ·)(v , s)− π(·, ·)(s)#

]
with [

π(·, ·)(v , s)+ π(·, ·)(v , s)−
]

= (π(0, ·)(s)	 + p(0,0)	)

×
[

T−+

T#+

]
(−K̂(s) + v I)−1

[
(R+)−1 Ψ̂(s)(|R−|)−1

]
and

π(·, ·)(s)# =
[
π(·, ·)(s)+ π(·, ·)(s)−

]
T±#

×(sĈ# − T##)−1.
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Analysis and numerical scheme

Expressing πi(x , xĉi/ri) in p(0,0)

Lemma

For all i ∈ S+,

πi(x , xĉi/ri) =
∑
j∈S	

pj(0,0)Tji exp(−(Tii/ri)x)/ri .
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Analysis and numerical scheme

Numerical scheme: (`− 1)∆u ≤ z ≤ `∆u

X (t)

Y (t)

∆u
2∆u

(`− 1)∆u
ξ`

`∆u

(L− 1)∆u
L∆u
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Analysis and numerical scheme

Numerical scheme

Truncate and discretize the state space of Jk to get the DTMC
{J̄k : k = 0,1,2, . . .} with state space {(i , `) : i ∈ S−, ` = 1,2, . . .L}

and matrix P̄ = [P̄`m]`,m=0,1,2,...,L made up of block matrices
P̄`m = [P̄i,`;j,m]i,j∈S− , where

P̄i,`;j,m = P(J̄k+1 = (j ,m) | J̄k = (i , `)).

Get P̄ by approximating

P̄`m =

∫ m∆u

y=(m−1)∆u
P`∆u,ydy ≈ ∆uP`∆u,m∆u,

and normalizing so that
∑L

m=0 P̄`m1 = 1.

Find ξ̄` = [ξ̄j;`]j∈S− by solving ξ̄P̄ = ξ̄, ξ̄1 = 1.
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Analysis and numerical scheme

Numerical scheme

Use this this to approximate

p(0,0)	 ≈ α

L∑
`=1

[
ξ̄` 0

]
eQ̂		`∆u(−T		)−1

and

π(0, ·)(s)	 ≈ α
L∑
`=1

[
ξ̄` 0

]
eQ̂		`∆u(Q̂		 + sI)−1

×
(

I− e−(Q̂		+sI)`∆u
)

(|Ĉ	|)−1.

Evaluate π(x , ·)(s) and invert using Abate and Whitt.
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Analysis and numerical scheme

Numerical Example

We consider a process with the following parameters: S = {1,2},
r1 = 2, r2 = −6, ĉ1 = ĉ2 = 2, ĉ1 = ĉ2 = −3, and

T =

[
−2 2
1 −1

]
.

This simple process is similar to the model studied in Kroese and
Scheinhardt (2011) and Werner (1998)

(but different from the numerical example analysed there).

[D.P. Kroese and W.R.W. Scheinhardt. Joint Distributions for Interacting Fluid Queues.
Queueing Systems, 2001.]

[W.R.W. Scheinhardt, PhD Thesis, 1998.]
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Analysis and numerical scheme

Simulated values (X (t),Y (t)), 0 ≤ t ≤ 105
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Analysis and numerical scheme

The estimated values [ξz]j for j = 2
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Analysis and numerical scheme

The estimated values [π(0, y)]j for j = 2

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

level y

 π
(0

,y
)

35



Analysis and numerical scheme

The estimated values [π(x , y)]j for j = 1, x = 1, . . . ,5

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

y

π(
x,

y)

36



Application to Accumulated Priority Queue∗

Two-class Accumulating Priority Queue

Single-server queue with PH service time

Customer classes i = 1,2

Poisson arrivals with rates λi for i = 1,2

Class i customer accumulates priority at rate bi
(Upon arrival) with b1 > b2

Customer with the highest accumulated priority commences
service (After completion of service).
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Application to Accumulated Priority Queue∗

Maximum Priority Process M

Let Mi(t) be the least upper bound for all class i customers
present in the queue at time t .

Maximum Priority Process M = {(M1(t),M2(t)); t ≥ 0}.

We are interested in the stationary distribution of M embedded at
the moments of commencement of service.
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Application to Accumulated Priority Queue∗

Result

We map M to a certain TFQ {(ϕ(t), Z̃ (t), M̃2(t)); t ≥ 0}.

The stationary distribution of {(ϕ(t), Z̃ (t), M̃2(t)); t ≥ 0} can be
obtained using our results discussed above.

The stationary distribution of M embedded at the moments of
commencement of service

is equivalent to the part of the stationary distribution of
{(ϕ(t), Z̃ (t), M̃2(t)); t ≥ 0}
corresponding to down-phase −.

[M. M. O’Reilly and W. R. W. Scheinhardt. Stationary distributions for a class of
Markov-modulated tandem fluid queues. Submitted to Stochastic Models, 2016.]
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Application to Accumulated Priority Queue∗

Future work

Numerical analysis for the accumulating priority queue.

Analysis of the dual model.
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