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Matrix-analytic methods (MAMSs) °

Professor Marcel Neuts (1935-2014)

“His transformative idea was that, rather than developing mathematical structures that have little

use for practical applications, the focus should be on constructing models and methods of

analysis that can be applied efficiently, using fast algorithms and computers.” 4

4B.F{. Holland, M.M. O’Reilly. Matrix-analytic methods: Stochastic models for the real world, Australian Mathematical
Sciences Institute (AMSI) Research Report, 2018-2019.
SConferences: MAM10 (2019, Australia), MAM11 (2022, South Korea).


http://www.maths.utas.edu.au/People/oreilly/mam/info.html
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
http://www.maths.utas.edu.au/People/oreilly/mam/mam10.html
http://www.mam11.org/mams.php

Stochastic fluid model (SFM) {(¢(t), X(t)) : t > 0} &7

@ Phase variable ¢(t), level variable X(t) > 0;

@ {p(t):t>0}isaCTMC, S = {1,...,n}, generator T = [Tj];
@ RatescicRforalli e S;

@ aX(t)/dt = c ) x I(X(t) > 0) + max{c,), 0} x I(X(t) =0).

X(t) ()

X t

0
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N.G. Bean, M.M. O’Reilly, P.G. Taylor. Algorithms for the Laplace—Stieltjes transforms of first return times for stochastic fluid
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SFFEM {(¢(t), X(1), Y(t)) : t > 0}

@ Phase variable (t), level variables X(t) > 0, Y(t) > 0;
@ Ratescj,rie Rforallje S;
@ This is a special case of the SFFM in [2]. Here, ri(x) = r;.

X, Ci Y, n



Application areas of SFFMs

Any system with dynamics that can be modelled by SFMs/CTMCs.

@ High-speed telecommunications networks e.g. router buffer in the
Internet, ad hoc mobile phone network, congestion control

@ Insurance e.g. risk processes

@ Manufacturing/management systems e.g. hydro-power
@ Environmental problems e.g. coral modelling

@ Health care e.g. priority queueing
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Notation: Sets S, and S, ¢ € {+, —,0}
Denote
St = {ieS:c >0}
S. = {ieS:c<0}
S = {ieS:c=0}

and
ST = {ieS: >0}
S = {ieS: <0}
S = {ieS:r=0}
and
R~ diag()jesus-
]

C = diag(c)jes+us--



Notation: Initial distribution of {(¢(t), X(t)) : t > 0}

Denote A, = [0,v], v > 0, and let

r(Ay) = [N/’(»Av)]jes (1)
where
1A = PX(O) € 4@ =) = [ ux)ok+P. @)
Let
Se={j€S:¢<0}=8_US
and



Destination at time t: 1 V" (t)(A), A = [u, V]

X(t) :
v k,,,:::iiziv:::::::‘ ,,,,,,,,,,,,,, o ____
V(A
yk---------- ::::’,/‘,:::: : < ____ e
we V(1)




Notation: Operator V/(t)

Operator
V(1) = [Vi™(D]iest jesme.me(+,—.0} (3)
is such that
V(1) / df(x)PLo(t) = 1. X(1) € A
) =1, X(0) = x] (4)

is the total probability of the process {(y(t), X(t)) : t > 0} being in the
destination set (j, A) at time ¢

assuming start in / according to the measure ! .



Lemma 3 in [2]

We have
V(t) = e, (5)

i _ [R¢m
with B = [B’l ]ieS’v’,jeS’",E,me{ﬁf} where
Caset)forall2 € {+,—,0}andi € Sy, i #}j,

i) = T”/xeA vE(x)dx + I(g < 0)Typf (0)/(0 € A)
+1(¢; > 0)T;p (0)/(u =0 & v > 0); 6)

Case2)forall ¢ € {+,—,0},¢#m,

nfBiMA) = —I(g < 0)guf (0)/(v = 0); @
Case 3) otherwise,
plBImA) = Ty UXEA v (x)ax + p]"(0)I(0 € .A)] + (¢ > 0)l(u # v) [c,u,’"(u)/(u #0) — cjujm(v)}
+I(¢; < 0)l(u # v) [c,uj’"(u) — c/-u/m(v)] LGRS O)c,u;"(O)/(o € A). ®8)



In-out fluid Y(¢) of {((t), Y(t)) : t > O} with rates |r|

Y(1)
zZ+y




Destination at time w(y): 11U (y, 8)(A), A= [u, V]

X(t)‘ E
e e
A Uy, 8)(A)
Uk--------------- B oo
i éuU(y,S)




Destination at time w(y): 11U (y, 8)(Av), Av = [0, V]

X(t)]
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Notation: Fluid operator U(y, s) (idea similar to [5])

Operator
U(ya S) = [Ugm(yv S)]iESz,jESmZ,mG{-i—,—} (9)
is such that

HUPY.9A) = [ Bl D) = X(wl) € A)
[ ¢(0) = i.X(0) = X (10

is the LST of the time w(y) = inf {r >0:y=[1 o Inlle(u) = i)du}
taken for the in-out fluid to reach y

anddosoin¢(-)=jand X(-) € A

assuming start in / according to the measure pt.



Introduction

Lemma 4 in [2]
Forall y > 0 and s € C with ®(s) > 0,
U(y,s) = e”e, (11)

with D(s) = [ng s where

U )}iesf,jesm;é,me{ﬂ—}

DiM(s) = [Rf (Bfm — sl + B®(sl — B~ BOm)} ) (12)
I
and R’ = diag(Rf),cs is a diagonal matrix of operators such that
1
RY(x, A) = —I(x € A) (13)

Id

foralli e S*and A € {(u,v), (u,Vv],[u,Vv),[u,V]}, v>u>0.



Notation: The n-th level derivative prp

Forn=0,1,2,..., D = [D”Hj]jES is such that

oriy(AY) = o ,,Zu: yA) Zu/ P(A)) (14)

for any set A, = [0, v], v >0, and

pri(Av) = ZM/ i (Av) :/ OD”V/'(X)dX"‘D”P/ (15)
X=

whenever the density prv/(x) = [pnvj]jes and the mass piP = [pnPjjes
exist.



Lemma 3 in [1] (when S° = &)
Assume the following boundary conditions
D+ (0) = prPe(RaTey )(R1C4 ) (16)

are met for all n > 0. Then, foralln > 1,
"4
pnp(Ay) = /0 prv(x)dx + pnP
n
pv(x) = [pri(x) pwe(x) | =D vO(x)h(k,n)
k=0

P = [0, DnP.]:P(RT)”+zn:u(k*1)(0)h(k,n)
k=1

where h(k, n) is a sum of all different products in which (—RC)
appears exactly k times and (RT) exactly (n — k) times.



Theorem 1 in [1] (when S° = &)
Suppose that the original distribution is

vi(x) = pixe ™, (17)
forsome A > 0, 0 < p; < 1, such that (16) is met.

Then, forany y > 0,

pe™(Ay) = —pu(A,)eFTRO 4 ([0, 00))e®Y  (18)
where
BA) = 1O(0,50) —pO(a) = e (1

is the initial distribution of starting outside set .A,, and so in the set
AV = (V’ +OO).

20



Corollary 1 in [1]
Suppose S% = Sy # @ and the original distribution is
vi(x) = pixe ™,
for some A > 0, 0 < p; < 1, such that the boundary condition
prv+(0) = prP_(R-T_1)(R.Cy) ™

is met for all n > 0, where

T Tor+Too(=Too) "Tor T +Tio(—Too) ' To-
T 4+ T o(-Too) "Toy T—— +T_o(-Too) "To— |
Then, forany y > 0,

[LeDy(Av) — _e—)\vy()\o)e(Fﬁ—l—kRC)y + ,U,([O,OO))G(R-T-)y

(22)

21



Theorem 2 in [1]

Let R = |C| = I for some v > 0 and for some b, 3 > 0, assume

A e A Rl L ST R S

and the initial distribution such that A = 5/~, and

: Ay
= > ol <
P. arbitrary such that P, > 0,P,1 < I

v+(0) P.(R.Te)(R:Cy)
vi(x) = e™v,(0), x>0

. b+ \y
vo(0) = arbitrary such that v4(0) > 0,v,(0)1 = X\ — - P.1
vo(x) = e Mu,(0), x > 0.

Then the boundary conditions (16) are satisfied for all n > 0.

22



Results

Example 1 in [1]

§={1,2},85,=8"={1},,Se=8_ =8 ={2}, || =ci| fori=1,2,

1

K

2

and
_ | —(b+B) b+B | At
RT = [ b b =|CI™'T
P, = psuchthat0 <p< b
b+ 4

vi(x) = vi(0)e ™, x>0, v,.(0)=pb
vo(X) = v4(0)e ¥ x>0, v,(0)=p(1—-p)—pb>0.

Both {(¢(t), X(t)) : t > 0} and {(p(1), Y(t)) : t > 0} are stable.

23



Then by Theorem 1, we have,

ueDy(Av) _ _e—ﬂvy(ﬁo)e(RT—FﬁRC)y + <P—|— V(Bo)) e(RT)y
with
—b b+p3 _
(RT+BRC)y  _ (2b+B)y
° b o |0

P L [ —(bbJrﬁ) b+b5 ] (1 + e~ @49y,

24



Results

Example 2 in [1]

We modify Example 1 and assume that S = {1,2}, S; =S~ = {1}
and S, =S =St ={2}.

2

K

1

Now {(¢(t), Y(t)) : t > 0} is stable while {((t), X(t)) : t > 0} is
unstable.

Note that the analysis in Example 1 still holds.

25



Results

Example 3 in [1]

§=1{1,2,3,4},S, ={1,2},5_ ={3,4}, St ={1,4}, S~ ={2,3},

Iri| = |ci| = 1 for all i, and, with E denoting a matrix of ones, let

3 2

- | 2)E

RT — [ ((:/Z)é) ((b+_»6t’))|/) ]:T:1C|—1T
P. = (p/2)[1 1]

v(0) = (pb/2)[1 1]

ve(0) = (B(1—p)/2—pb/2)[1 1]

vx) = e (o).

(t)) : t > 0} is stable since my + o < w3 + 74,
(1)) : t > 0} is null recurrent since w1 + 4 = mp + 73.

{(

o(1),
{(p

t), X
(1), Y

26



By Theorem 1, we have,

v(0)

pe”(A,) = —e‘ﬂ"TBeDyB‘1 + (P + VB)

where
D = diag(—b,—(b+ B),0,—(2b+ B))

records eigenvalues and

o 1 1 1 1 0
0 —1 1 1 . 1 0
B =11 o1 5[ B0 1
-1 0 1 —42 0 -1

record corresponding eigenvectors of RT, RT + SRC.

—_ = A

27



Results

Example 4(a) in [1]

We modify T = [q;] in Example 3 so that {((t), Y(t)) : t > 0} is stable
as well, since then my + 74 < w0 + 4.

K

For some r > 0.5, let E = E x diag(1 — r, r) and
—(b+ 8 ((b+pB)/2)E
AT = [ bE —bl ]
P. = (p/2)[1 1]
v(0) = (pb)[1 —r 1]
ve(0) = (B(1-p)/2—pb/2)[1 1]

v(x) = e #u(0).

=T=|C|7'T

28



Results

Time 0

29



Results

Destination at time 0: p;®;(.A,), A, = [0, v]

X(t) :
N RS T T
o
K /’/ pd(Ay)
- t

30



First return to level zero: measure pu®(A,)
Define operator ® = [®;];cs+ jes- such that
6(0) = inf{t > 0 : Y(t) = 0}

and

o

pi®j(Av) = dpui(x)P(p(6(0)) = j, X(6(0)) € Av

x=0

| #(0) =, X(0) = x, Y(0) = 0)

is the probability that the unbounded fluid )N’(-) returns to level 0
and does so in phase j and with X(-) € A,

given start in phase i and level X(0) distributed according to ;.

(24)
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Theorem 3 in [1]

Suppose the original distribution is v;(x) = pjAe™*, for some A > 0,
0 < p;j < 1, such that the boundary condition (16) is met.

Then, for any set A, =[0,v], v > 0,

pd(Ay) = [ ptu(Ay) p=(Ay) |

= —H(Av)(b)\ + /J/([O7 OO))(D

— —e‘”ug\o)dh + (P + V()\O)) o. (25)

Here, ® records the probabilities of the first return to level 0 in
{(¢(1), Y(1)) : t > 0}, and &, is computed using similar methods
(algorithms for @ in [6]).

32



Interpretations

Assuming start from Y(0) = 0 in some phase ¢(0) € St US™
according to the initial distribution p;

vector u([0, c0))® records the probabilities that the process returns to
level Y(-) = 0 in some phase ¢(-) and level X(-) anywhere in [0, +00);
while

vector u(A,)®, records the probabilities that that the process returns
to level Y(-) = 0 in some phase ¢(-) and in some level X(-) > v.

33



What is &,?

For any s > 0, let

RHT++ — sl R¥T+-

Z'&)=| " g1+ RT

Then e%"(9 is the Laplace-Stieltjes transform matrix of the distribution
of the total upward shift in Y(-) accumulated by the time w(y).

Let f,(x) be the inverse of &?" (9%, and let M = [, (x)dy. Then ®
M=d(l—-d) " andd =1—(1+M)"!

Similarly, ®, =1 — (1 + M,)~" where M, = fy"ioﬂ;y(yﬁ)dy and
fr.y(y/2)dy is the inverse of the LST matrix @ (/HARC)y  [1],

8A. Samuelson, M.M. O'Reilly, N.G. Bean. On the generalized reward generator for stochastic fluid models: A new equation
for W. Stochastic Models, 33(4):495-523, 2017.
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Examples

Example 5 in [1]

S§={1,2},8, =8t ={1}, 8. =8 ={2}, |r]| = |cj| =1 forall i,

RT — [‘12 21}:T:|C\1T
P=[002]
b(0) = [02 06]

Let A = 1.

35



Examples

By Theorem 3, with A, = [0, v], v > 0,

b

1([0,00))
1([0, o0))®
H(/IV)

(Ay)®)

[g lc”:[o(.)s H
|

e™[02 06]
e[03 0.2]

[04 02]-e7[03 02]

[ 0.3333 0.6667 | — e[ 0.3333 0.3333 ].
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Examples

(@)
(b)

X=[0N] at e w(1)
atx=0 attime w(y)

Mass in
Mass

aaaaaaaaaaaa

(a) [ke™ (Av)]; (b) limy—o[re® (Av));

Mass in X € A, attime w(y) for y = 0.1 (dashed line), and y = 1;

Mass at X = 0 at time w(y) (which is zero for j € S ).
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Examples

atx>0 attime w(y)

in X=[0.v] at time ©

Mass.

3
03
025

01 2

(c) llimy_ o NeDy(-Av) —limy_o PfeD’v(Av)]j (d) [“q)(AV)]j

5
Yy

() Massin X > 0 attime w(y);
(d) Massin X € A, attime 6.



Example 6 in [1]

§=1{1,2,3,4},S, ={1,2},S. =S_ ={3,4}, S = {1,4},
S ={2,3}, || =|ci|=1foralli. Letr =0.6, p=0.2,

’
]
RT = =142, + 1 0

1—r r 0 -1
P. = [p/2 p/2]
vi(0) = e *plt—r 1]
ve(x) = e *(1/2-p)[1 1]
v(x) = v(0)e ™.
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Examples

By Theorem 3, with A, =[0,v],v>0,and St US™ = {1,4} U {2,3},

e-[21]

([0, 00))
1([0, c0)) @
p(Ay)
p(Ay)®,

h o

pnd(Ay)

lim pe? (A,)

y—0o0

0 0 0.2662 0.7338

0 0 0.4314 0.5686
0.1774 0.7190 0 0
0.2935 0.5686 0 0

0.08 0.40 0.12 0.40 ]
0.1387 0.3137 0.1939 0.2861 |

[

[

e[0.08 0.30 0.12 0.30 |

e[ 0.1383 0.1415 0.1697 0.1206 |

[0.1387 0.3137 0.1939 0.2861 |
—e Y[ 0.1383 0.1415 0.1697 0.1206 |

[ 0.1333 0.3333 0.2000 0.3333 |
e [ 0.1333 0.1667 0.2000 0.1667 |.
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Examples

(@)
(b)

in X=[0V] at time (1)
atx=0 attime w(y)

Mass
Mass

(a) [ne™ (AV)); (b) limy_o[1e™ (Av));
Mass in X € A, attime w(y) for y = 0.1 (dashed line), and y = 1;

Mass at X = 0 at time w(y) (which is zero for j € S ).
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Examples

ass atX>0 attime wly)

sssssss

(©) [limy_ o0 NeDy(Av) —limy_o llfeDy(Av)]j

() Massin X > 0 attime w(y);
(d) Massin X € A, attime 6.

in X=[0.v] at time  ©

55555
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