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Introduction

Stochastic fluid-fluid models (SFFMs) 1,2,3

Małgorzata M. O’Reilly Nigel G. Bean Zbigniew Palmowski

1N.G. Bean, M.M. O’Reilly, Z. Palmowski. Matrix-analytic methods for the analysis
of stochastic fluid-fluid models. Submitted.

2
N.G. Bean, M.M. O’Reilly. The stochastic fluid–fluid model: A stochastic fluid model driven by an uncountable-state

process, which is a stochastic fluid model itself. Stochastic Processes and their Applications, 124:1741–1772, 2014.
3

N.G. Bean, M.M. O’Reilly, A stochastic two-dimensional fluid model, Stochastic Models, 29:31–63, 2013.
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Introduction

Matrix-analytic methods (MAMs) 5

Professor Marcel Neuts (1935-2014)

“His transformative idea was that, rather than developing mathematical structures that have little

use for practical applications, the focus should be on constructing models and methods of

analysis that can be applied efficiently, using fast algorithms and computers.” 4

4
B.R. Holland, M.M. O’Reilly. Matrix-analytic methods: Stochastic models for the real world, Australian Mathematical

Sciences Institute (AMSI) Research Report, 2018-2019.
5Conferences: MAM10 (2019, Australia), MAM11 (2022, South Korea).

4

http://www.maths.utas.edu.au/People/oreilly/mam/info.html
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
http://www.maths.utas.edu.au/People/oreilly/mam/mam10.html
http://www.mam11.org/mams.php


Introduction

Stochastic fluid model (SFM) {(ϕ(t),X (t)) : t ≥ 0} 6,7

Phase variable ϕ(t), level variable X (t) ≥ 0;
{ϕ(t) : t ≥ 0} is a CTMC, S = {1, . . . ,n}, generator T = [Tij ];
Rates ci ∈ R for all i ∈ S;
dX (t)/dt = cϕ(t) × I(X (t) > 0) + max{cϕ(t),0} × I(X (t) = 0).

X

x

0

X(t)

t

1 2 n. . .
ϕ(t)

6
N.G. Bean, M.M. O’Reilly, P.G. Taylor. Hitting probabilities and hitting times for stochastic fluid flows. Stochastic Processes

and their Applications, 115:1530–1556, 2005.
7

N.G. Bean, M.M. O’Reilly, P.G. Taylor. Algorithms for the Laplace–Stieltjes transforms of first return times for stochastic fluid
Flows. Methodology and Computing in Applied Probability, 10:381–408, 2008.
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Introduction

SFFM {(ϕ(t),X (t),Y (t)) : t ≥ 0}

Phase variable ϕ(t), level variables X (t) ≥ 0, Y (t) ≥ 0;
Rates ci , ri ∈ R for all i ∈ S;
This is a special case of the SFFM in [2]. Here, ri(x) = ri .

X , ci Y , ri

Y (0)

X(0)
0

Y (t)

X(t)
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Introduction

Application areas of SFFMs

Any system with dynamics that can be modelled by SFMs/CTMCs.

High-speed telecommunications networks e.g. router buffer in the
Internet, ad hoc mobile phone network, congestion control
Insurance e.g. risk processes
Manufacturing/management systems e.g. hydro-power
Environmental problems e.g. coral modelling
Health care e.g. priority queueing
. . .

7



Introduction

Notation: Sets S` and S`, ` ∈ {+,−,0}
Denote

S+ = {i ∈ S : ci > 0}
S− = {i ∈ S : ci < 0}
S0 = {i ∈ S : ci = 0}

and

S+ = {i ∈ S : ri > 0}
S− = {i ∈ S : ri < 0}
S0 = {i ∈ S : ri = 0}

and

R = diag(
1
|rj |

)j∈S+∪S−

C = diag(cj)j∈S+∪S− .

8



Introduction

Notation: Initial distribution of {(ϕ(t),X (t)) : t ≥ 0}

Denote Av = [0, v ], v > 0, and let

µ(Av ) = [µj(Av )]j∈S (1)

where

µj(Av ) = P(X (0) ∈ Av , ϕ(0) = j) =

∫ v

x=0
νj(x)dx + Pj . (2)

Let
S• = {j ∈ S : cj ≤ 0} = S− ∪ S0

and

P =
[

0+ P•
]

ν(x) =
[
ν+(x) ν•(x)

]
.

9



Introduction

Destination at time t : µ`i V
`m
ij (t)(A), A = [u, v ]

X (t)

u

v

t0

µ µV (t)

µV (t)(A)
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Introduction

Notation: Operator V (t)

Operator
V (t) = [V `m

ij (t)]i∈S`,j∈Sm;`,m∈{+,−,0} (3)

is such that

µ`i V
`m
ij (t)(A) =

∫ ∞
x=0

dµ`i (x)P[ϕ(t) = j ,X (t) ∈ A

| ϕ(0) = i ,X (0) = x ] (4)

is the total probability of the process {(ϕ(t),X (t)) : t ≥ 0} being in the
destination set (j ,A) at time t

assuming start in i according to the measure µ`i .

11



Introduction

Lemma 3 in [2]

We have
V (t) = eBt , (5)

with B = [B`m
ij ]i∈S`,j∈Sm,`,m∈{+,−} where

Case 1) for all ` ∈ {+,−, 0} and i ∈ S`, i 6= j ,

µ
`
i B`m

ij (A) = Tij

∫
x∈A

ν
`
i (x)dx + I(cj ≤ 0)Tij p

`
i (0)I(0 ∈ A)

+I(cj > 0)Tij p
`
i (0)I(u = 0 & v > 0); (6)

Case 2) for all ` ∈ {+,−, 0}, ` 6= m,

µ
`
j B`m

jj (A) = −I(cj < 0)cjν
`
j (0)I(v = 0); (7)

Case 3) otherwise,

µ
m
j Bmm

jj (A) = Tjj

[∫
x∈A

ν
m
j (x)dx + pm

j (0)I(0 ∈ A)

]
+ I(cj > 0)I(u 6= v)

[
cjν

m
j (u)I(u 6= 0)− cjν

m
j (v)

]
+I(cj < 0)I(u 6= v)

[
cjν

m
j (u)− cjν

m
j (v)

]
− I(cj < 0)cjν

m
j (0)I(0 ∈ A). (8)

12



Introduction

In-out fluid Ŷ (t) of {(ϕ(t),Y (t)) : t ≥ 0} with rates |ri |

Ŷ (t)

t
z

z + y

ω(y) 13



Introduction

Destination at time ω(y): µiU`m
ij (y , s)(A), A = [u, v ]

X (t)

u

v

ω(y)0

µ µU(y , s)

µU(y , s)(A)

t
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Introduction

Destination at time ω(y): µiU`m
ij (y , s)(Av ), Av = [0, v ]

X (t)

v

ω(y)0

µ µU(y , s)(Av )
t

15



Introduction

Notation: Fluid operator U(y , s) (idea similar to [5])

Operator
U(y , s) = [U`m

ij (y , s)]i∈S`,j∈Sm;`,m∈{+,−} (9)

is such that

µ`i U
`m
ij (y , s)(A) =

∫ ∞
x=0

dµ`i (x)E [e−sω(y)I(ϕ(ω(y)) = j ,X (ω(y)) ∈ A)

| ϕ(0) = i ,X (0) = x ] (10)

is the LST of the time ω(y) = inf
{

t > 0 : y =
∫ t

u=0 |ri |I(ϕ(u) = i)du
}

taken for the in-out fluid to reach y

and do so in ϕ(·) = j and X (·) ∈ A

assuming start in i according to the measure µ`i .
16
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Lemma 4 in [2]

For all y ≥ 0 and s ∈ C with <(s) ≥ 0,

U(y , s) = eD(s)y , (11)

with D(s) =
[
D`m

ij (s)
]

i∈S`,j∈Sm;`,m∈{+,−}
where

D`m
ij (s) =

[
R`
(

B`m − sI + B`0(sI − B00)−1B0m
)]

ij
(12)

and R` = diag(R`
i )i∈S` is a diagonal matrix of operators such that

R(`)
i (x ,A) =

1
|ri |

I(x ∈ A) (13)

for all i ∈ S` and A ∈ {(u, v), (u, v ], [u, v), [u, v ]}, v ≥ u ≥ 0.

17



Results

Notation: The n-th level derivative Dnµ

For n = 0,1,2, . . ., Dnµ = [Dnµj ]j∈S is such that

Dnµj(Av ) =
dn

dyn

∑
i

µie
Dy
ij (Av )

∣∣∣
y=0

=
∑

i

µiDn
ij (Av ) (14)

for any set Av = [0, v ], v > 0, and

Dnµj(Av ) =
∑

i

µiDn
ij (Av ) =

∫ v

x=0
Dnνj(x)dx + DnPj (15)

whenever the density Dnν(x) = [Dnνj ]j∈S and the mass DnP = [DnPj ]j∈S
exist.

18
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Lemma 3 in [1] (when S0 = ∅)

Assume the following boundary conditions

Dnν+(0) = DnP•(R•T•+)(R+C+)−1 (16)

are met for all n ≥ 0. Then, for all n ≥ 1,

Dnµ(Av ) =

∫ v

0
Dnν(x)dx + DnP

Dnν(x) =
[

Dnν+(x) Dnν•(x)
]

=
n∑

k=0

ν(k)(x)h(k ,n)

DnP =
[

0+ DnP•
]

= P(RT)n +
n∑

k=1

ν(k−1)(0)h(k ,n)

where h(k ,n) is a sum of all different products in which (−RC)
appears exactly k times and (RT) exactly (n − k) times.

19



Results

Theorem 1 in [1] (when S0 = ∅)

Suppose that the original distribution is

νi(x) = piλe−λx , (17)

for some λ > 0, 0 ≤ pi ≤ 1, such that (16) is met.

Then, for any y > 0,

µeDy (Av ) = −µ(Āv )e(RT+λRC)y + µ([0,∞))e(RT)y (18)

where

µ(Āv ) = µ(0)([0,∞))− µ(0)(Av ) = e−λv ν(0)

λ
(19)

is the initial distribution of starting outside set Av , and so in the set
Āv = (v ,+∞).

20



Results

Corollary 1 in [1]

Suppose S0 = S0 6= ∅ and the original distribution is

νi(x) = piλe−λx , (20)

for some λ > 0, 0 ≤ pi ≤ 1, such that the boundary condition

Dnν+(0) = DnP−(R−T̃−+)(R+C+)−1 (21)

is met for all n ≥ 0, where

T̃ =

[
T++ + T+0(−T00)−1T0+ T+− + T+0(−T00)−1T0−
T−+ + T−0(−T00)−1T0+ T−− + T−0(−T00)−1T0−

]
.

Then, for any y > 0,

µeDy (Av ) = −e−λv ν(0)

λ
e(RT̃+λRC)y + µ([0,∞))e(RT̃)y . (22)

21



Results

Theorem 2 in [1]

Let R = |C| = γI for some γ > 0 and for some b, β > 0, assume

RT =

[
−(b + β)I (R+T+•)
(R•T•+) −bI

]
= T = |C|−1T. (23)

and the initial distribution such that λ = β/γ, and

P• = arbitrary such that P• ≥ 0,P•1 ≤
λγ

b + λγ

ν+(0) = P•(R•T•+)(R+C+)−1

ν+(x) = e−λxν+(0), x > 0

ν•(0) = arbitrary such that ν•(0) ≥ 0,ν•(0)1 = λ− b + λγ

γ
P•1

ν•(x) = e−λxν•(0), x > 0.

Then the boundary conditions (16) are satisfied for all n ≥ 0.
22



Results

Example 1 in [1]

S = {1,2}, S+ = S+ = {1}, S• = S− = S− = {2}, |ri | = |ci | for i = 1,2,

1

2

and

RT =

[
−(b + β) b + β

b −b

]
= |C|−1T

P• = p such that 0 < p <
β

b + β

ν+(x) = ν+(0)e−βx , x > 0, ν+(0) = pb
ν•(x) = ν•(0)e−βx , x > 0, ν•(0) = β(1− p)− pb > 0.

Both {(ϕ(t),X (t)) : t ≥ 0} and {(ϕ(t),Y (t)) : t ≥ 0} are stable.
23



Results

Then by Theorem 1, we have,

µeDy (Av ) = −e−βv ν(0)

β
e(RT+βRC)y +

(
P +

ν(0)

β

)
e(RT)y

with

e(RT+βRC)y =

[
−b b + β
b −(b + β)

]
(1 + e−(2b+β)y )

eRTy =

[
−(b + β) b + β

b −b

]
(1 + e−(2b+β)y ).

24



Results

Example 2 in [1]

We modify Example 1 and assume that S = {1,2}, S+ = S− = {1}
and S• = S− = S+ = {2}.

1

2

Now {(ϕ(t),Y (t)) : t ≥ 0} is stable while {(ϕ(t),X (t)) : t ≥ 0} is
unstable.

Note that the analysis in Example 1 still holds.

25



Results

Example 3 in [1]

S = {1,2,3,4}, S+ = {1,2}, S− = {3,4}, S+ = {1,4}, S− = {2,3},
|ri | = |ci | = 1 for all i , and, with E denoting a matrix of ones, let

1

3 2

4

RT =

[
−(b + β)I ((b + β)/2)E

(b/2)E −bI

]
= T = |C|−1T

P• = (p/2)[1 1]

ν+(0) = (pb/2)[1 1]

ν•(0) = (β(1− p)/2− pb/2)[1 1]

ν(x) = e−βxν(0).

{(ϕ(t),X (t)) : t ≥ 0} is stable since π1 + π2 < π3 + π4,
{(ϕ(t),Y (t)) : t ≥ 0} is null recurrent since π1 + π4 = π2 + π3.

26



Results

By Theorem 1, we have,

µeDy (Av ) = −e−βv ν(0)

β
BeDyB−1 +

(
P +

ν(0)

β

)
B̂eDy B̂−1

where

D = diag(−b,−(b + β),0,−(2b + β))

records eigenvalues and

B =


0 1 1 1
0 −1 1 1
1 0 1 − b

b+β
−1 0 1 − b

b+β

 , B̂ =


1 0 1 1
−1 0 1 1
0 1 1 −1
0 −1 1 −1


record corresponding eigenvectors of RT, RT + βRC.

27



Results

Example 4(a) in [1]

We modify T = [qij ] in Example 3 so that {(ϕ(t),Y (t)) : t ≥ 0} is stable
as well, since then π1 + π4 < π2 + π4.

1

3 2

4

For some r > 0.5, let Ẽ = E× diag(1− r , r) and

RT =

[
−(b + β)I ((b + β)/2)E

bẼ −bI

]
= T = |C|−1T

P• = (p/2)[1 1]

ν+(0) = (pb)[1− r r ]

ν•(0) = (β(1− p)/2− pb/2)[1 1]

ν(x) = e−βxν(0).

28
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Time θ

Y (t)

t

θ 29



Results

Destination at time θ: µiΦij(Av ), Av = [0, v ]

X (t)

v

θ0

µ µΦ(Av )
t
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Results

First return to level zero: measure µΦ(Av )

Define operator Φ = [Φij ]i∈S+,j∈S− such that

θ(0) = inf{t > 0 : Ỹ (t) = 0}

and

µiΦij(Av ) =

∫ ∞
x=0

dµi(x)P(ϕ(θ(0)) = j ,X (θ(0)) ∈ Av

| ϕ(0) = i ,X (0) = x , Ỹ (0) = 0) (24)

is the probability that the unbounded fluid Ỹ (·) returns to level 0

and does so in phase j and with X (·) ∈ Av

given start in phase i and level X (0) distributed according to µi .
31
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Theorem 3 in [1]

Suppose the original distribution is νi(x) = piλe−λx , for some λ > 0,
0 ≤ pi ≤ 1, such that the boundary condition (16) is met.

Then, for any set Av = [0, v ], v > 0,

µΦ(Av ) =
[
µ+Ψ(Av ) µ−Ξ(Av )

]
= −µ(Āv )Φλ + µ([0,∞))Φ

= −e−λv ν(0)

λ
Φλ +

(
P +

ν(0)

λ

)
Φ. (25)

Here, Φ records the probabilities of the first return to level 0 in
{(ϕ(t),Y (t)) : t ≥ 0}, and Φλ is computed using similar methods
(algorithms for Φ in [6]).
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Results

Interpretations

Assuming start from Y (0) = 0 in some phase ϕ(0) ∈ S+ ∪ S−
according to the initial distribution µ;

vector µ([0,∞))Φ records the probabilities that the process returns to
level Y (·) = 0 in some phase ϕ(·) and level X (·) anywhere in [0,+∞);

while

vector µ(Āv )Φλ records the probabilities that that the process returns
to level Y (·) = 0 in some phase ϕ(·) and in some level X (·) > v .

33



Results

What is Φλ?

For any s > 0, let

Z+(s) =

[
R+T++ − sI+ R+T+−

R−T−+ R−T−−

]
.

Then eZ+(s)y is the Laplace-Stieltjes transform matrix of the distribution
of the total upward shift in Y (·) accumulated by the time ω(y).

Let f̃y (x) be the inverse of eZ+(s)y , and let M =
∫∞

y=0 f̃y (x)dy . Then 8

M = Φ (I−Φ)−1 and Φ = I− (I + M)−1.

Similarly, Φλ = I− (I + Mλ)−1 where M̂λ =
∫∞

y=0 f̂λ;y (y/2)dy and

f̂λ;y (y/2)dy is the inverse of the LST matrix e(Z+(s)+λRC)y [1].

8
A. Samuelson, M.M. O’Reilly, N.G. Bean. On the generalized reward generator for stochastic fluid models: A new equation

for Ψ. Stochastic Models, 33(4):495-523, 2017.
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Examples

Example 5 in [1]

S = {1,2}, S+ = S+ = {1}, S− = S− = {2}, |ri | = |ci | = 1 for all i ,

1

2

RT =

[
−2 2
1 −1

]
= T = |C|−1T

P =
[

0 0.2
]

ν(0) =
[

0.2 0.6
]

ν(x) = ν(0)e−λx .

Let λ = 1.
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Examples

By Theorem 3, with Av = [0, v ], v > 0,

Φ =

[
0 Ψ
Ξ 0

]
=

[
0 1

0.5 0

]
µ([0,∞)) =

[
0.2 0.8

]
µ([0,∞))Φ =

[
0.4 0.2

]
µ(Āv ) = e−λv [ 0.2 0.6

]
µ(Āv )Φλ = e−λv [ 0.3 0.2

]
µΦ(Av ) =

[
0.4 0.2

]
− e−λv [ 0.3 0.2

]
lim

y→∞
µeDy (Av ) =

[
0.3333 0.6667

]
− e−λv [ 0.3333 0.3333

]
.
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(a) [µeDy (Av )]j (b) limv→0[µeDy (Av )]j

(a) Mass in X ∈ Av at time ω(y) for y = 0.1 (dashed line), and y = 1;

(b) Mass at X = 0 at time ω(y) (which is zero for j ∈ S+).
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(c) Mass in X > 0 at time ω(y);

(d) Mass in X ∈ Av at time θ.
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Example 6 in [1]

S = {1,2,3,4}, S+ = {1,2}, S• = S− = {3,4}, S+ = {1,4},
S− = {2,3}, |ri | = |ci | = 1 for all i . Let r = 0.6, p = 0.2,

1

3 2

4

RT = =


−2 0 1 1
0 −2 1 1

1− r r −1 0
1− r r 0 −1

 = T = |C|−1T

P• = [p/2 p/2]

ν+(0) = e−xp[1− r r ]

ν•(x) = e−x (1/2− p)[1 1]

ν(x) = ν(0)e−x .

39



Examples

By Theorem 3, with Av = [0, v ], v > 0, and S+ ∪ S− = {1,4} ∪ {2,3},

Φ =

[
0 Ψ
Ξ 0

]
=


0 0 0.2662 0.7338
0 0 0.4314 0.5686

0.1774 0.7190 0 0
0.2935 0.5686 0 0


µ([0,∞)) =

[
0.08 0.40 0.12 0.40

]
µ([0,∞))Φ =

[
0.1387 0.3137 0.1939 0.2861

]
µ(Āv ) = e−λv [ 0.08 0.30 0.12 0.30

]
µ(Āv )Φλ = e−λv [ 0.1383 0.1415 0.1697 0.1206

]
µΦ(Av ) =

[
0.1387 0.3137 0.1939 0.2861

]
−e−λv [ 0.1383 0.1415 0.1697 0.1206

]
lim

y→∞
µeDy (Av ) =

[
0.1333 0.3333 0.2000 0.3333

]
−e−λv [ 0.1333 0.1667 0.2000 0.1667

]
. 40
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(a) [µeDy (Av )]j (b) limv→0[µeDy (Av )]j

(a) Mass in X ∈ Av at time ω(y) for y = 0.1 (dashed line), and y = 1;

(b) Mass at X = 0 at time ω(y) (which is zero for j ∈ S+).
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Examples
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(c) Mass in X > 0 at time ω(y);

(d) Mass in X ∈ Av at time θ.

42



Conclusion

Thank you
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