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Introduction

Motivation

Matrix-analytic methods (MAMs) =⇒ Applications in evolution.

We describe a model for the species , and derive
theoretical and algorithmic results for its key measures.

We describe a model for the gene , and derive theoretical
and algorithmic results for its key measures.

We derive MAMs results for the probabilistic analysis of
reconciliation and illustrate the theory with numerical examples.

All code will be made publicly available.

Cite: Results presented here have been derived in 1.

1M.M. O’Reilly et al. Matrix-analytic methods for the gene-tree species-tree
reconciliation problem. To be submitted.
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Introduction

Matrix-analytic methods (MAMs)

Professor Marcel Neuts (1935-2014)

“His transformative idea was that, rather than developing mathematical structures that have little

use for practical applications, the focus should be on constructing models and methods of

analysis that can be applied efficiently, using fast algorithms and computers.” 2

2B.R. Holland and M.M. O’Reilly. Matrix-analytic methods: Stochastic models for
the real world, AMSI Research Report, 2018-2019.
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http://www.maths.utas.edu.au/People/oreilly/mam/info.html
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
https://amsi.org.au/wp-content/uploads/2019/11/research-report-2018-19-web.pdf
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Introduction

• Mechanistic Models 3

Mechanistic models are required that are rooted in real life
evolutionary/genetic processes.

Models work well when supported by mechanistic interpretations.

Need for developing a theoretical science instead of a purely
data-driven one.

Mechanistic models, which provide an explanation of
observations, can offer many predictions.

3D.A. Liberles, A.I. Teufel, L. Liu and T. Stadler. On the need for mechanistic
models in computational genomics and metagenomics. Genome Biology and
Evolution, 5(10):2008–2018, 2013.
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Introduction

• Mechanistic models

Figure: Simulation under some assumptions about the branching and extinction processes.
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Species tree1

• Species tree: Desired features

Evolution of a branch depends on underlying phases.

Initial distribution of phases on a branch may depend on the
parent branch.

After birth, a branch evolves independently of all other branches.

Possible events: speciation, extinction, phase transition.

Therefore, we apply Markovian Binary Tree (MBT) model. 4

4Nectarios Kontoleon. The Markovian binary tree : A model of the
macroevolutionary process. PhD thesis, The University of Adelaide, 2006.
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Species tree1

• A wide range of speciation types

I. Each of two new branches starts as a new process;
II. Each of two new branches is a continuation of the parent branch;
III. The left branch is the continuation of the parent branch while the

right branch is the new species;

. . . etc

S

S

E

S

S

E

T(1)

x

x

T(2)

x

x

9



Species tree1

• Markovian Binary Tree (MBT) model

MBT {(M(t), ϕ(t)) : t ≥ 0} with state space

S = N× {E ,1, . . . ,n}

where

level variable M(t) ∈ N counts the number of species born in [0, t ]

phase variable ϕ(t) ∈ {E ,1, . . . ,n} records some information that
drives the evolution of the species

{ϕ(t) : t ≥ 0} is a continuous-time Markov chain with an
absorbing state E (extinction).

10



Species tree1

• MBT model parameters

α(0) = [α
(0)
j ]j=1,...,n d = [di ]i=1,...,n D0 = [(D0)ij ]i,j=1,...,n

D1 = [(D1)ij ]i,j=1,...,n P = [Pj,ik ]i,j,k=1,...,n B = [Bi,jk ]i,j,k=1,...,n

α
(0)
j probability that a branch starts in phase j .

di rate at which a branch terminates when in phase i .
(D0)ij rate at which a branch changes phase from i to j .
(D1)ij rate at which a branch gives birth and simultaneously
transitions to phase j when in phase i .
Pj,ik probability that a branch starts in phase j given its parent
transitioned from phase i to phase k at the time of giving birth.
Bi,jk = (D1)ikPj,ik rate at which a parent in phase i makes a
transition to phase k and simultaneously gives birth to child in
phase j .

11



Species tree1

Example1: BiSSE model 5 as an MBT

S = N× {E ,0,1}, α(0) =
[
α
(0)
0 α

(0)
1

]
,

d =

[
µ0
µ1

]
, D0 =

[
q00 q01
q10 q11

]
, D1 =

[
λ0 0
0 λ1

]
,

P =


P0,00 P1,00
P0,01 P1,01
P0,10 P1,10
P0,11 P1,11

 =


1 0
0 0
0 0
0 1

 ,
B =

[
B0,00 B0,01 B1,00 B1,01
B0,10 B0,11 B1,10 B1,11

]
=

[
λ0 0 0 0
0 0 0 λ1

]
.

5W.P. Maddison, P.E. Midford, and S.P. Otto. Estimating a binary character’s effect
on speciation and extinction. Systematic Biology, 56(5):701–710, 2007.
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Species tree1

Example1: MuSSE model 6 as an MBT

S = N× {E ,1, . . . ,n}
α(0) = [α(0)]i=1,2,...,n

d =
(
[µi ]i=1,2,...,n

)T (column vector)
D0 = [qij ]i=1,2,...,n

D1 = diag(λi)i=1,2,...,n

P = [Pj,ik ]i,j,k=1,...,n is such that
Pj,ik = 1 for i = j = k and Pj,ik = 0 otherwise

B = [Bi,jk ]i,j,k=1,...,n is such that
Bi,jk = λi for i = j = k and Bi,jk = 0 otherwise.

6R.G. FitzJohn. Diversitree: Comparative phylogenetic analyses of diversification
in R. Methods in Ecology and Evolution, 3(6):1084–1092, 2012.
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Species tree1

MBT is

a particular class of a level-dependent
Quasi-Birth-and-Death-Process (QBD) 7 8 9

and
a particular class of continuous-time multi-type branching
processes 10 in which

the life of each branch is a Markovian arrival process (MAP) 11.

7Neuts MF (1981) Matrix-geometric solutions in stochastic models: an algorithmic approach.
The Johns Hopkins University Press, Baltimore.

8Neuts MF (1989) Structured stochastic matrices of M/G/1 type and their applications. Marcel
Dekker, New York.

9T. Phung-Duc, H. Masuyama, S. Kasahara, and Y. Takahashi. A simple algorithm for the rate
matrices of level-dependent QBD processes. In Proceedings of the 5th International Conference
on Queueing Theory and Network Applications, pages 46–52, 2010.

10K. Athreya and P. Ney. Branching Processes. Springer-Verlag, New York, 1972.
11G. Latouche, M.-A. Remiche, and P. Taylor. Transient Markov arrival processes. The Annals

of Applied Probability, 13(2):628–640, 2003.
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Species tree1

True tree T versus reconstructed species tree T∗
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–

[G(w , z; t)]ij likelihood of observing the internal branch (w , z)

[D(1)(t − w)]k` likelihood of observing the external branch (w , t)

G(0, t ; t) ≡ D(1)(t)
15



Species tree1

Key derived measures

Likelihood
`(T ∗)

of observing reconstructed tree T ∗.

(time-dependent) Probability

Di|n(t)

that a tree with n tips at time t has i tips on the left subtree.

Long-run probability

Di|n = lim
t→∞

Di|n(t)

that a tree with n tips has i tips on the left subtree.
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Species tree1

Results summary

We derive expressions for `(T ∗) under general MBT model.

As (a simpler) example, under variant I 12 of the model, we have

`(T ∗) =
K∏

k=1

(
αG(tk

0 , t
k
1 ; t)D11

) M∏
m=1

(
αD(1)(t − t̂m

0 )
)

(1)

αG(tk
0 , t

k
1 ; t)D11 is the likelihood of observing the internal branch

(tk
0 , t

k
1 )

αD(1)(t − t̂m
0 ) is the likelihood of observing the external branch

(̂tm
0 , t).

12A. Ch. Soewongsono, B.R. Holland and M.M. O’Reilly. Tree Shape Statistics of
Trees Generated Using Phase-Type Distributed Times to Speciation. To be submitted.
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Species tree1

Results summary

We derive results for `(T ∗) via differential equations and iterations.

These results involve

the probability D(i,n)(t) that we see i tips on the left and n total tips
at time t , and

the probability D(n)(t) that we see n tips at the time t .

Therefore, we obtain the result for

Di|n(t) =
D(i,n)(t)
D(n)(t)

(2)

which can be computed for a given set of parameters of the model.

18



Species tree1

Some DEs

Well known 13 (+ solution methods):

dE(t)
dt

= d + D0E(t) + B(E(t)⊗ E(t)) (3)

E(0) = 0.

One of our results1 (+ solution methods):

dD(n)(t)
dt

= D0D(n)(t) +
n∑

i=0

B
(

D(i)(t)⊗ D(n−i)(t)
)

(4)

D(n)(0) = I(n = 1)1.

13Remiche M.-A., Hautphenne S., Latouche G. Transient features for Markovian
binary trees. In Proceedings of the Fourth International ICST Conference on
Performance Evaluation Methodologies and Tools, 2009.
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Species tree1

Approximation of Di |n based on data

The probability Di|n that a tree with n tips has i tips on the left subtree
can be estimated using statistical methods and the formula 14

qn(i , β) =
1

αn(β)

Γ(β + i + 1)Γ(β + n − i + 1)

Γ(i + 1)Γ(n − i + 1)
, 1 ≤ i ≤ n − 1 (5)

where αn(β) is a normalising constant.

We compare this estimate with Di|n.

14D.J. Aldous. 1996. Probability distributions on cladograms. Pages 1–18 in
Random discrete structures (D. J. Aldous, and R. Pemantle, eds.). Springer, New York.
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Species tree1

Example: µ0 = µ1 = 0.03, λ0 = λ1 = 0.1, q01 = q10 = 0.01 E0 = E1 = 0.3
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Species tree1

Example: µ0 = µ1 = 0.03, λ0 = λ1 = 0.1, q01 = q10 = 0.01 E0 = E1 = 0.3
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Species tree1

Example: µ0 = 0.03, µ1 = 0.9, λ0 = 0.3, λ1 = 0.1, q01 = q10 = 0.01

E0 = 0.1329,E1 = 0.9893
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Species tree1

Example: µ0 = 0.03, µ1 = 0.9, λ0 = 0.3, λ1 = 0.1, q01 = q10 = 0.01

E0 = 0.1329,E1 = 0.9893
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Species tree1

Example: µ0 = µ1 = 0.7, λ0 = 0.9, λ1 = 0.1, q01 = q10 = 0.01

E0 = 0.7887,E1 = 0.9965
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Species tree1

Example: µ0 = µ1 = 0.7, λ0 = 0.9, λ1 = 0.1, q01 = q10 = 0.01

E0 = 0.7887,E1 = 0.9965
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Species tree1

Example: µ0 = µ1 = 0.03, λ0 = λ1 = 0.09, q01 = 0.005, q10 = 0.010

E0 = E1 = 0.1111
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Species tree1

Example: µ0 = µ1 = 0.03, λ0 = λ1 = 0.09, q01 = 0.005, q10 = 0.010

E0 = E1 = 0.1111
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Species tree1

Example: µ0 = 0.0756, µ1 = 0.3138, λ0 = 0.9460, λ1 = 0.8545, q01 = 0.1735,

q10 = 0.5359 E0 = 0.1089,E1 = 0.2496
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Species tree1

Example: µ0 = 0.0756, µ1 = 0.3138, λ0 = 0.9460, λ1 = 0.8545, q01 = 0.1735,

q10 = 0.5359 E0 = 0.1089,E1 = 0.2496
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Species tree1

Example: µ0 = 0.5840, µ1 = 0.9091, λ0 = 0.2896, λ1 = 0.3542, q01 = 0.3298,

q10 = 0.7271 E0 = E1 = 1
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Species tree1

Example: µ0 = 0.5840, µ1 = 0.9091, λ0 = 0.2896, λ1 = 0.3542, q01 = 0.3298,

q10 = 0.7271 E0 = E1 = 1
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Species tree1

Example: µ0 = 0.8140, µ1 = 0.8874, λ0 = 0.0120, λ1 = 0.2498, q01 = 0.0534,

q10 = 0.3518 E0 = E1 = 1
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Species tree1

Example: µ0 = 0.8140, µ1 = 0.8874, λ0 = 0.0120, λ1 = 0.2498, q01 = 0.0534,

q10 = 0.3518 E0 = E1 = 1
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Species tree1

Example: µ0 = 0.0796, µ1 = 0.4009, λ0 = 0.9000, λ1 = 0.8747, q01 = 0.2252,

q10 = 0.2343, E0 = 0.1519,E1 = 0.3672
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Species tree1

Example: µ0 = 0.0796, µ1 = 0.4009, λ0 = 0.9000, λ1 = 0.8747, q01 = 0.2252,

q10 = 0.2343, E0 = 0.1519,E1 = 0.3672
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Gene tree1

• Gene tree: Desired features

Evolution of each branch may dependend on other branches, due
to interactions between the genes which share various functions.

No extinction of the gene family due to the protective mechanisms,
and so we model the evolution of a gene family that has survived.

Evolution of a branch depends on underlying phases.

Possible events: gene duplication, gene loss, neofunctionalisation,
nonfunctionalisation.

Therefore, we apply Quasi-Birth-and-Death (QBD) model 15.

15J. Diao, T.L. Stark, D.A. Liberles, M.M. O’Reilly, and B.R. Holland.
Level-dependent QBD models for the evolution of a family of gene duplicates.
Stochastic Models, 36(2):285–311, 2020.
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Gene tree1

• Quasi-Birth-and-Death (QBD) model

QBD {(Y (t), ϕ(t)) : t ≥ 0} with state space

S = {(n, k) : n = 1,2, . . . ; k = 1, . . . ,Kn}

where

level variable Y (t) records the number of genes in the family

phase variable ϕ(t) records some information about the family.

38



Gene tree1

• QBD model parameters

Initial distribution vector

αn = [αn,k ]k=1,...Kn , αn,k = P(Y (0) = n, ϕ(0) = k)

and generator

Q = [Q[n,n
′
]]n,n′ =


Q[1,1] Q[1,2] 0 0 · · ·
Q[2,1] Q[2,2] Q[2,3] 0 · · ·

0 Q[3,2] Q[3,3] Q[3,4] · · ·
0 0 Q[4,3] Q[4,4] · · ·
...

...
...

...
. . .

 ,

where block Q[n,n
′
] = [q(n,k)(n′ ,k ′ )] records the transition rates

q(n,k)(n′ ,k ′ ) from states (n, k) to (n
′
, k

′
), n

′ ∈ {n − 1,n,n + 1}.
39



Gene tree1

• Example1:

Consider a QBD with {(Y (t), ϕ(t)) : t ≥ 0} with state space

S = {(n,m,n(L),m(L), k)}

where
n = 1,2, . . . is the number of genes of family
m = 0, . . . ,n is the number of redundant genes
n(L) = 1, . . . ,n − 1 is the number of genes on the left branch
m(L) = 0, . . . ,m is the number of the redundant genes on the left
branch
k = 1, . . . ,K is some information about the gene family used to
model the total number of functions in the family.

We derive generator of such QBD in terms of parameters uc , ud , ur
and uf , by modifying the results in Table 1 in15.

40



Gene tree1

Example cont: parameters and stability condition

Stability condition: 16 π exists ⇐⇒ uc + ur > ud due to

uc + ur > ud =⇒ λLost = (ur + uc) ·m > λDup = ud · n

for all n >
ur + uc

ur + uc − ud
· z0

uc per gene rate of null mutation in the coding region of a gene;
ur per region rate of null mutation in regulatory region of a gene;
ud per gene rate of duplication of a gene;
uf per gene rate of obtaining a new function of a gene;
z0 the number of functions in the gene family.

16J. Diao, B.R. Holland and M.M. O’Reilly. A subfunctionalization model of gene
family evolution predicts balanced tree shapes. To be submitted.
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Gene tree1

• Key derived measures (transient and long-run)

Likelihood
`(T ∗)

of observing reconstructed tree T ∗.

Probability
p(i |n)(t)

that a tree with n tips at time t has i tips on the left subtree.

Long-run probability

p(i |n) = lim
t→∞

p(i |n)(t)

that a tree with n tips has i tips on the left subtree.
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Gene tree1

• Results summary

We state expressions for these measures via Laplace transforms
and iterations using the theory of QBDs.
We outline an algorithm for the computation of these measures for
any set of parameters of the model.

For example,

p(i |n) =
p(i ,n)

p(n)
, i = 1, . . . ,n − 1

p(n) =
n−1∑
i=1

p(i ,n)

p(i ,n) =
∑

m,m(L),k

π(n,m,i,m(L),k)

where π = [π(n,m,n(L),m(L),k)] is the stationary distribution.
43



Conclusion

Current and future work

Computations and code1:

I Simulations

I Computations for the species tree model (generalized MBT)

I Computations for the gene tree model

I Computations for the reconciliation problem:
(Collection of) best fitting gene trees

Future work:

I Applications of our results to large data sets.

I Modelling extensions to include other evolutionary behaviours.
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Conclusion

Thank you for listening
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